Logarithmic Sobolev Inequalities for Infinite Dimensional Hormander Type Generators on the Heisenberg Group

被引:17
作者
Inglis, J. [1 ]
Papageorgiou, I. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Logarithmic Sobolev inequality; Heisenberg group; Gibbs measures; Hormander type generators; Infinite dimensions; UNBOUNDED SPIN SYSTEMS; HEAT KERNEL; GRADIENT;
D O I
10.1007/s11118-009-9126-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Heisenberg group is one of the simplest sub-Riemannian settings in which we can define non-elliptic Hormander type generators. We can then consider coercive inequalities associated to such generators. We prove that a certain class of nontrivial Gibbs measures with quadratic interaction potential on an infinite product of Heisenberg groups satisfy logarithmic Sobolev inequalities.
引用
收藏
页码:79 / 102
页数:24
相关论文
共 25 条
[1]  
ANE C, 2000, 10 SOC MATH
[2]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[3]   On gradient bounds for the heat kernel on the Heisenberg group [J].
Bakry, Dominique ;
Baudoin, Fabrice ;
Bonnefont, Michel ;
Chafai, Djalil .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :1905-1938
[4]   Hamilton-Jacobi theory and the heat kernel on Heisenberg groups [J].
Beals, R ;
Gaveau, B ;
Greiner, PC .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :633-689
[5]  
BELLAICHE A, 1996, SUBRIEMANNIAN GEOMET, P4
[6]  
BOBKOV S, 2005, MEM AM MATH SOC, V176
[7]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[8]   The Log-Sobolev inequality for unbounded spin systems [J].
Bodineau, T ;
Helffer, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (01) :168-178
[9]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[10]  
GROMOV M, 1996, SUBRIEMANNIAN GEOMET, P85