Rational points on pencils of conics and quadrics with many degenerate fibres

被引:23
作者
Browning, T. D. [1 ]
Matthiesen, L. [2 ]
Skorobogatov, A. N. [3 ,4 ]
机构
[1] Univ Bristol, Bristol, Avon, England
[2] Inst Math Jussieu, Paris, France
[3] Univ London Imperial Coll Sci Technol & Med, London, England
[4] Inst Informat Transmiss Problems, Moscow, Russia
关键词
HASSE PRINCIPLE; WEAK APPROXIMATION; DESCENT; FIBRATIONS; BUNDLES;
D O I
10.4007/annals.2014.180.1.8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any pencil of conics or higher-dimensional quadrics over Q, with all degenerate fibres defined over Q, we show that the Brauer-Manin obs truction controls weak approximation. The proof is based on the Hasse principle and weak approximation for some special intersections of quadrics overQ, which is a consequence of recent advances in additive combinatorics.
引用
收藏
页码:381 / 402
页数:22
相关论文
共 5 条
  • [1] Rational points on the intersection of three quadrics
    Heath-Brown, D. R.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 273 - 289
  • [2] Rational points on fibrations with few non-split fibres
    Harpaz, Yonatan
    Wei, Dasheng
    Wittenberg, Olivier
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 89 - 133
  • [3] Varieties with too many rational points
    Browning, T. D.
    Loughran, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1249 - 1267
  • [4] Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points
    J.-L. Colliot-Thélène
    A. N. Skorobogatov
    Sir Peter Swinnerton-Dyer
    Inventiones mathematicae, 1998, 134 : 579 - 650
  • [5] Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points
    Colliot-Thelene, JL
    Skorobogatov, AN
    Swinnerton-Dyer, P
    INVENTIONES MATHEMATICAE, 1998, 134 (03) : 579 - 650