Graded Skew Specht Modules and Cuspidal Modules for Khovanov-Lauda-Rouquier Algebras of Affine Type A

被引:1
作者
Muth, Robert [1 ]
机构
[1] Washington & Jefferson Coll, Dept Math, Washington, PA 15301 USA
关键词
Khovanov-Lauda-Rouquier algebra; Hecke algebra; Symmetric group; Specht module; Cuspidal module;
D O I
10.1007/s10468-018-9808-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kleshchev, Mathas and Ram. Proc. Lond. Math. Soc. (2) 105, 1245-1289 (2012) gave a presentation for graded Specht modules over Khovanov-Lauda-Rouquier algebras of finite and affine type A. We show that this construction can be applied more generally to skew shapes to give a presentation of graded skew Specht modules, which arise as subquotients of restrictions of Specht modules. As an application, we show that cuspidal modules associated to a balanced convex preorder in affine type A are skew Specht modules for certain hook shapes.
引用
收藏
页码:977 / 1015
页数:39
相关论文
共 18 条
[1]   An algebraic characterization of the affine canonical basis [J].
Beck, J ;
Chari, V ;
Pressley, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :455-487
[2]   Graded Specht modules [J].
Brundan, Jonathan ;
Kleshchev, Alexander ;
Wang, Weiqiang .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 655 :61-87
[3]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[4]   Generalised column removal for graded homomorphisms between Specht modules [J].
Fayers, Matthew ;
Speyer, Liron .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (02) :393-432
[5]   The classification of convex orders on affine root systems [J].
Ito, K .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (12) :5605-5630
[6]   SPECHT SERIES FOR SKEW REPRESENTATIONS OF SYMMETRIC GROUPS [J].
JAMES, GD ;
PEEL, MH .
JOURNAL OF ALGEBRA, 1979, 56 (02) :343-364
[7]  
Khovanov M., 2009, Represent. Theory, V13, P309
[8]  
Kleshchev A.S., 2005, Linear and Projective Representations of Symmetric Groups
[9]   Stratifying KLR algebras of affine ADE types [J].
Kleshchev, Alexander ;
Muth, Robert .
JOURNAL OF ALGEBRA, 2017, 475 :133-170
[10]   Imaginary Schur-Weyl Duality [J].
Kleshchev, Alexander ;
Muth, Robert .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 245 (1157) :VII-+