On shape loop spaces

被引:0
作者
Nasri, Tayyebe [1 ]
Mashayekhy, Behrooz [2 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Pure Math, Bojnord, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Dept Pure Math, POB 1159-91775, Mashhad, Razavi Khorasan, Iran
关键词
Shape theory; Shape group; Topological group; Loop space; Inverse limit;
D O I
10.1016/j.topol.2019.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, considering the kth shape loop space (Omega) over cap (p)(k) (X, x), for an HPol(*)-expansion p : (X, x) -> ((X-lambda , x(lambda)), [p'], A) of a pointed topological space (X, x), first we show that (Omega) over cap (p)(k) (X, x) is an H-group for every topological space (X, x). Then we prove that Omega(c)(k) : Top(*) -> Top(*) is a functor, for all k is an element of N-0, where c is the tech HPol.-expansion of spaces. Moreover, with some assumptions, we show that if X is pi(k)-shape injective, then X is k-homotopically Hausdorff. Finally, we show that the long exact sequence of shape groups (coarse shape groups) of a pointed pair of certain spaces, is also exact as topological groups. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
[31]   Pointed shape and global attractors for metrizable spaces [J].
Giraldo, A. ;
Jimenez, R. ;
Moron, M. A. ;
Ruiz del Portal, F. R. ;
Sanjurjo, J. M. R. .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) :167-176
[32]   Twistor quantization of loop spaces of compact Lie groups [J].
Sergeev, A. G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 157 (03) :1745-1759
[33]   Twistor quantization of loop spaces of compact Lie groups [J].
A. G. Sergeev .
Theoretical and Mathematical Physics, 2008, 157 :1745-1759
[34]   Homotopy nilpotency in p-regular loop spaces [J].
Shizuo Kaji ;
Daisuke Kishimoto .
Mathematische Zeitschrift, 2010, 264 :209-224
[35]   Colimits, Stanley-Reisner algebras, and loop spaces [J].
Panov, T ;
Ray, N ;
Vogt, R .
CATEGORICAL DECOMPOSITION TECHNIQUES IN ALGEBRAIC TOPOLOGY, 2004, 215 :261-291
[36]   Spherical classes in some finite loop spaces of spheres [J].
Zare, Hadi .
TOPOLOGY AND ITS APPLICATIONS, 2017, 224 :1-18
[37]   Loop homological invariants associated to real projective spaces [J].
Gao, Man ;
Tan, Colin ;
Wu, Jie .
TOPOLOGY AND ITS APPLICATIONS, 2016, 209 :275-288
[38]   Periodic billiard trajectories and Morse theory on loop spaces [J].
Irie, Kei .
COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (01) :225-254
[39]   Length of Geodesics and Quantitative Morse Theory on Loop Spaces [J].
Alexander Nabutovsky ;
Regina Rotman .
Geometric and Functional Analysis, 2013, 23 :367-414
[40]   Products of Compacta with Plyhedra and Topological Spaces in the Shape Category [J].
Sibe Marde¡ik .
Mediterranean Journal of Mathematics, 2004, 1 (1) :43-49