Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode

被引:46
作者
Cheng, Jianli [1 ]
Wang, Bin [1 ]
Xin, Huolin L. [2 ]
Kim, Chunjoong [3 ]
Nie, Fude [1 ]
Li, Xiaodong [1 ]
Yang, Guangcheng [1 ]
Huang, Hui [1 ]
机构
[1] China Acad Engn Phys, New Mat R&D Ctr, Inst Chem Mat, Mianyang 621900, Sichuan, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
ELECTROCHEMICAL ENERGY-STORAGE; REVERSIBLE LITHIUM STORAGE; BATTERY ELECTRODES; HOLLOW NANOSPHERES; ULTRAFAST-CHARGE; CARBON NANOTUBES; ANATASE TIO2; ONE-POT; PERFORMANCE; OXIDE;
D O I
10.1039/c3ta14120a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A free-standing and binder-free electrode, which consists of a 3-D conductive scaffold and conformal TiO2 nanorods, is synthesized by using an interconnected CNT film as a nanoreactor. Such a conformal 3-D nanostructure can not only provide the electrodes with fast charge transportation and long-term structural integrity, but also eliminate the heavy metal current collector, polymer binder and conductive additive. The conformal CNT-TiO2 anode demonstrates exceptional electrochemical properties with high capacity, high rate capability and excellent cycling stability. It shows a charge capacity of 129 mA h g(-1) after 1000 cycles at 10 C with a low capacity fade of 0.007% per cycle in a half cell. Meanwhile, the CNT-TiO2/LiFePO4 full cell exhibits superior capacity retention with a high Coulombic efficiency of approximately 100% during 400 cycles at 2 C. Such a 3-D conformal nanostructure is promising for application in high-performance energy storage.
引用
收藏
页码:2701 / 2707
页数:7
相关论文
共 44 条
[1]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[2]   Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects [J].
Belak, Anna A. ;
Wang, Yizhou ;
Van der Ven, Anton .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :2894-2898
[3]   MWCNT/V2O5 Core/Shell Sponge for High Areal Capacity and Power Density Li-Ion Cathodes [J].
Chen, Xinyi ;
Zhu, Hongli ;
Chen, Yu-Chen ;
Shang, Yuanyuan ;
Cao, Anyuan ;
Hu, Liangbing ;
Rubloff, Gary W. .
ACS NANO, 2012, 6 (09) :7948-7955
[4]   High-Performance Energy-Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks [J].
Chen, Zheng ;
Zhang, Dieqing ;
Wang, Xiaolei ;
Jia, Xilai ;
Wei, Fei ;
Li, Hexing ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2012, 24 (15) :2030-2036
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   CNT@Fe3O4@C Coaxial Nanocables: One-Pot, Additive-Free Synthesis and Remarkable Lithium Storage Behavior [J].
Cheng, Jianli ;
Wang, Bin ;
Park, Cheol-Min ;
Wu, Yuping ;
Huang, Hui ;
Nie, Fude .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (30) :9866-9874
[7]   One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability [J].
Cheng, Jianli ;
Xin, Huolin ;
Zheng, Haimei ;
Wang, Bin .
JOURNAL OF POWER SOURCES, 2013, 232 :152-158
[8]   Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Choi, Jang Wook ;
Cui, Yi .
ACS NANO, 2010, 4 (07) :3671-3678
[9]   Glucose-Assisted Growth of MoS2 Nanosheets on CNT Backbone for Improved Lithium Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (47) :13142-13145
[10]   Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (20) :5780-5782