Markov chain Monte Carlo estimation of a multiparameter decision model: Consistency of evidence and the accurate assessment of uncertainty

被引:77
|
作者
Ades, AE
Cliffe, S
机构
[1] Univ Bristol, Dept Social Med, MRC, Hlth Serv Res Collaborat, Bristol BS8 2PR, Avon, England
[2] UCL, Inst Child Hlth, Dept Epidemiol & Biostat, London, England
关键词
evidence synthesis; decision analysis; Markov chain Monte Carlo; Bayesian methods; incremental net benefit; expected value of perfect information; epidemiology; HIV; screening;
D O I
10.1177/027298902400448920
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Decision models are usually populated 1 parameter at a time, with 1 item of information informing each parameter. Often, however, data may not be available on the parameters themselves but on several functions of parameters, and there may be more items of information than there ore parameters to be estimated. The authors show how in these circumstances all the model parameters can be estimated simultaneously using Bayesian Markov chain Monte Carlo methods, Consistency of the information and/or the adequacy of the model can also be assessed within this framework. Statistical evidence synthesis using all available data should result in more precise estimates of parameters and functions of parameters, and is compatible with the emphasis currently placed on systematic use of evidence. To illustrate this, WinBUGS software is used to estimate a simple 9-parameter model of the epidemiology of HIV in women attending prenatal clinics, using information on 12 functions of parameters, and to thereby compute the expected net benefit of 2 alternative prenatal testing strategies, universal testing and targeted testing of high-risk groups. The authors demonstrate improved precision of estimates, and lower estimates of the expected value of perfect information, resulting from the use of all available data.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 50 条
  • [1] Correlations between parameters in risk models: Estimation and propagation of uncertainty by Markov Chain Monte Carlo
    Ades, AE
    Lu, G
    RISK ANALYSIS, 2003, 23 (06) : 1165 - 1172
  • [2] Generalized Likelihood Uncertainty Estimation and Markov Chain Monte Carlo Simulation to Prioritize TMDL Pollutant Allocations
    Mishra, Anurag
    Ahmadisharaf, Ebrahim
    Benham, Brian L.
    Wolfe, Mary Leigh
    Leman, Scotland C.
    Gallagher, Daniel L.
    Reckhow, Kenneth H.
    Smith, Eric P.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2018, 23 (12)
  • [3] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [4] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [5] Parameter stability and consistency in an alongshore-current model determined with Markov chain Monte Carlo
    Ruessink, B. G.
    JOURNAL OF HYDROINFORMATICS, 2008, 10 (02) : 153 - 162
  • [6] Adaptive Markov chain Monte Carlo sampling and estimation in Mata
    Baker, Matthew J.
    STATA JOURNAL, 2014, 14 (03) : 623 - 661
  • [7] Logistic Growth Modeling with Markov Chain Monte Carlo Estimation
    Choi, Jaehwa
    Chen, Jinsong
    Harring, Jeffery R.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (01) : 2 - 18
  • [8] Performance of ensemble Kalman filter and Markov chain Monte Carlo under uncertainty in forecast model
    Patel, Rajan G.
    Jain, Tarang
    Trivedi, Japan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 415 - 431
  • [9] CONSISTENCY OF MARKOV CHAIN QUASI-MONTE CARLO ON CONTINUOUS STATE SPACES
    Chen, S.
    Dick, J.
    Owen, A. B.
    ANNALS OF STATISTICS, 2011, 39 (02) : 673 - 701
  • [10] Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Madsen, Henrik
    Rosbjerg, Dan
    JOURNAL OF HYDROLOGY, 2008, 353 (1-2) : 18 - 32