Numerical simulation of transient phonon heat transfer in silicon nanowires and nanofilms

被引:11
作者
Terris, D. [1 ]
Joulain, K. [1 ]
Lacroix, D. [2 ]
Lemonnier, D. [1 ]
机构
[1] ENSMA, Lab Etud Therm, BP 109, F-86961 Futuroscope, France
[2] Univ Herri Poincare, LEMTA, F-54506 Vandoeuvre Les Nancy, France
来源
12TH INTERNATIONAL CONFERENCE ON PHONON SCATTERING IN CONDENSED MATTER (PHONONS 2007) | 2007年 / 92卷
关键词
D O I
10.1088/1742-6596/92/1/012077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This work proposes a numerical simulation of heat conduction in silicon nanowires and nanofilms. Boltzmann equation for phonons is solved in the relaxation time approximation. The equation is integrated in an axisymmetric cylindrical two dimensional geometry. Solid angle integration is done by means of Discrete Ordinate Method. Moreover, in contrast to other models published in literature, spectral dependency of relaxation times and acoustic wave dispersion are taken into account in this numerical resolution. Consequently, thermal profiles are obtained for silicon nanowires and nanofilms in steady state allowing computation of thermal conductivity and/or thermal conductance. Besides, we solve the unsteady Boltzmann equation in order to obtain nanosystems temporal evolution. The results obtained with this code match nanofilms and nanowires already predicted thermal profiles in steady state. In unsteady condition, diffusive state (Fourier) is discussed for nanowires and nanofilms. At low temperatures, ballistic phenomenons axe seen in nanofilms, whereas, in nanowires, due to boundary scattering, diffusion regime is observed.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
BETT AW, 2004, IOP SERIES OPTICS OP
[2]   An analytical model for the thermal conductivity of silicon nanostructures [J].
Chantrenne, P ;
Barrat, JL ;
Blase, X ;
Gale, JD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[3]  
Chen G, 2001, PHYS REV LETT, V86, P2297, DOI 10.1103/PhysRevLett86.2297
[4]   Gate-refreshable nanowire chemical sensors [J].
Fan, ZY ;
Lu, JG .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3
[5]  
FIVELAND WA, 1982, 82HT20 ASME
[6]   In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics [J].
Gomes, Carlos J. ;
Madrid, Marcela ;
Goicochea, Javier V. ;
Amon, Cristina H. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (11) :1114-1121
[7]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[8]   Monte Carlo transient phonon transport in silicon and germanium at nanoscales [J].
Lacroix, D ;
Joulain, K ;
Lemonnier, D .
PHYSICAL REVIEW B, 2005, 72 (06)
[9]  
LEMONNIER D, 2000, HEAT TECHNOLOGY, V18
[10]   Thermal conductivity of individual silicon nanowires [J].
Li, DY ;
Wu, YY ;
Kim, P ;
Shi, L ;
Yang, PD ;
Majumdar, A .
APPLIED PHYSICS LETTERS, 2003, 83 (14) :2934-2936