Dual-Band Polarization-Independent Subwavelength Grating Coupler for Wavelength Demultiplexing

被引:25
作者
Hao, Tianyi [1 ]
Sanchez-Postigo, Alejandro [2 ]
Cheben, Pavel [3 ]
Ortega-Monux, Alejandro [2 ]
Ye, Winnie N. [1 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[2] Univ Malaga, ETSI Telecomunicac, Dept Ingn Comunicac, Malaga 29071, Spain
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
关键词
Grating coupler; dual-band; polarization independent; wavelength-division-multiplexing; DESIGN;
D O I
10.1109/LPT.2020.3014640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface grating couplers are diffractive periodic structures that enable efficient coupling of light between optical fibers and planar waveguides. Conventional grating couplers have polarization specific and limited wavelength operation, because of the intrinsic radiation angle dependency on both wavelength and polarization. In this Letter, we propose, to the best of our knowledge, the first polarization-independent surface fiber-chip grating coupler, behaving as a wavelength splitter for the O and C communication bands. Polarization insensitivity is achieved by subwavelength segmentation of the silicon gratings, together with a novel design to allow the dual wavelengths to propagate along two opposite directions in the chip. For the TE and TM polarizations, coupling efficiencies around -4.5 dB are achieved at both 1310 nm and 1550 nm, with an average 1-dB bandwidth of similar to 45 nm and similar to 60 nm, respectively. This grating coupler concept can be used as a part of transceivers to increase the data rate of wavelength-division-multiplexing ( WDM) systems for fiber-tothe-home (FTTH) network services.
引用
收藏
页码:1163 / 1166
页数:4
相关论文
共 24 条
[1]   Understanding resolution limit of displacement Talbot lithography [J].
Chausse, P. J. P. ;
Le Boulbar, E. D. ;
Lis, S. D. ;
Shields, P. A. .
OPTICS EXPRESS, 2019, 27 (05) :5918-5930
[2]   Subwavelength integrated photonics [J].
Cheben, Pavel ;
Halir, Robert ;
Schmid, Jens H. ;
Atwater, Harry A. ;
Smith, David R. .
NATURE, 2018, 560 (7720) :565-572
[3]   The Emergence of Silicon Photonics as a Flexible Technology Platform [J].
Chen, Xia ;
Milosevic, Milan M. ;
Stankovic, Stevan ;
Reynolds, Scott ;
Bucio, Thalia Dominguez ;
Li, Ke ;
Thomson, David J. ;
Gardes, Frederic ;
Reed, Graham T. .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2101-2116
[4]   Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides [J].
Chen, Xia ;
Tsang, Hon K. .
OPTICS LETTERS, 2011, 36 (06) :796-798
[5]   Nanoholes Grating Couplers for Coupling Between Silicon-on-Insulator Waveguides and Optical Fibers [J].
Chen, Xia ;
Tsang, Hon Ki .
IEEE PHOTONICS JOURNAL, 2009, 1 (03) :184-190
[6]  
Cheng L., 2019, FRONTIERS OPTICS LAS
[7]   Polarization beam splitter using a binary blazed grating coupler [J].
Feng, Junbo ;
Zhou, Zhiping .
OPTICS LETTERS, 2007, 32 (12) :1662-1664
[8]   Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices [J].
Halir, Robert ;
Ortega-Monux, Alejandro ;
Benedikovic, Daniel ;
Mashanovich, Goran Z. ;
Wanguemert-Perez, J. Gonzalo ;
Schmid, Jens H. ;
Molina-Fernandez, Inigo ;
Cheben, Pavel .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2144-2157
[9]   Waveguide grating coupler with subwavelength microstructures [J].
Halir, Robert ;
Cheben, Pavel ;
Janz, Siegfried ;
Xu, Dan-Xia ;
Molina-Fernandez, Inigo ;
Wanguemert-Perez, Juan G. .
OPTICS LETTERS, 2009, 34 (09) :1408-1410
[10]   Bipolar conductivity in nanocrystallized TiO2 [J].
Islamov, D. R. ;
Gritsenko, V. A. ;
Cheng, C. H. ;
Chin, A. .
APPLIED PHYSICS LETTERS, 2012, 101 (03)