Convergences of Alternating Projections in Spaces

被引:0
作者
Choi, Byoung Jin [1 ]
Ji, Un Cig [2 ]
Lim, Yongdo [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[2] Chungbuk Natl Univ, Inst Ind & Appl Math, Dept Math, Cheongju 28644, South Korea
基金
新加坡国家研究基金会;
关键词
CAT(kappa) space; Alternating projection method; Alternating von Neumann sequence; Asymptotic regularity; Delta-convergence; FIRMLY NONEXPANSIVE-MAPPINGS; ASYMPTOTIC-BEHAVIOR; INFINITE PRODUCTS; GEODESIC SPACES; HADAMARD SPACES; BANACH-SPACES; OPERATORS; POINT; ALGORITHMS; THEOREMS;
D O I
10.1007/s00365-017-9382-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the asymptotic regularity and the -convergence of the sequence constructed by alternating projections onto closed convex sets in a space with . Furthermore, the strong convergence of the alternating von Neumann sequence is presented under certain regularity or compactness conditons.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 34 条
[1]  
ALFSEN EM, 1980, ACTA MATH-DJURSHOLM, V144, P267, DOI 10.1007/BF02392126
[2]  
[Anonymous], 1987, ESSAYS GROUP THEORY, DOI 10.1007/978-1-4613-9586-7_3
[3]   The Asymptotic Behavior of the Composition of Firmly Nonexpansive Mappings [J].
Ariza-Ruiz, David ;
Lopez-Acedo, Genaro ;
Nicolae, Adriana .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (02) :409-429
[4]  
Ariza-Ruiz D, 2014, J NONLINEAR CONVEX A, V15, P61
[5]   The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces [J].
Bacak, Miroslav ;
Reich, Simeon .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 16 (1-2) :189-202
[6]   Alternating projections in CAT(0) spaces [J].
Bacak, Miroslav ;
Searston, Ian ;
Sims, Brailey .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :599-607
[7]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[8]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[9]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[10]  
BREGMAN LM, 1965, DOKL AKAD NAUK SSSR+, V162, P487