Gradient regularity for elliptic equations in the Heisenberg group

被引:75
作者
Mingione, Giuseppe [1 ]
Zatorska-Goldstein, Anna [2 ]
Zhong, Xiao [3 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Warszawski, Inst Matemat Stosowanej & Mech, PL-02097 Warsaw, Poland
[3] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Heisenberg group; p-Laplacean; Weak solutions; Regularity; NONLINEAR SUBELLIPTIC EQUATIONS; QUASI-LINEAR EQUATIONS; DIFFERENTIAL EQUATIONS; VARIATIONAL INTEGRALS; VMO COEFFICIENTS; HORMANDER TYPE; WEAK SOLUTIONS; VECTOR-FIELDS; CARNOT GROUPS; MINIMIZERS;
D O I
10.1016/j.aim.2009.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves all issue raised in [J.J. Manfredi. G. Mingione, Regularity results tor quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485-544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C-L alpha-regularity for p-harmonic functions in the Heisenberg group for p near 2, in: Contemp. Math.. vol. 370, 2005, pp. 17-23]. In turn, using some recent techniques of Caffarelli and Peral [L. Caffarelli. I. Peral, On W-Lp estimates for elliptic equations in divergence Corm, Comm. Pure Appl. Math. 51 (1998) 1-21], the a priori estimates found are shown to imply the Suitable local Calderon-Zygmund theory for the related class of non-homogeneous, possibly degenerate equations, involving discontinuous coefficients. These last results extend to the sub-elliptic setting a few classical non-linear Euclidean results [T. Iwaniec. Projections onto gradient fields and L-p-estimates for degenerated elliptic operators, Studia Math. 75 (1983) 293-312; E. DiBenedetto, J.J. Manfredi, Oil the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math. 115 (1993) 1107-1134], and to the non-linear case estimates of the same nature that were available in the sub-elliptic setting only for solutions to linear equations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 129
页数:68
相关论文
共 48 条
[31]   PROJECTIONS ONTO GRADIENT FIELDS AND LP-ESTIMATES FOR DEGENERATED ELLIPTIC-OPERATORS [J].
IWANIEC, T .
STUDIA MATHEMATICA, 1983, 75 (03) :293-312
[32]  
IWANIEC T, 1994, J REINE ANGEW MATH, V454, P143
[33]   THE POINCARE INEQUALITY FOR VECTOR-FIELDS SATISFYING HORMANDER CONDITION [J].
JERISON, D .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (02) :503-523
[34]   A local estimate for nonlinear equations with discontinuous coefficients [J].
Kinnunen, J ;
Zhou, SL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (11-12) :2043-2068
[35]   Regularity of quasi-minimizers on metric spaces [J].
Kinnunen, J ;
Shanmugalingam, N .
MANUSCRIPTA MATHEMATICA, 2001, 105 (03) :401-423
[36]  
Kohn J. J., 1973, Partial differential equations, V23, P61
[37]   The singular set of minima of integral functionals [J].
Kristensen, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (03) :331-398
[38]  
Ladyzhenskaya O. A., 1968, LINEAR QUASILINEAR E
[39]  
Lu G., 1994, REV MAT IBEROAM, V10, P453
[40]   EMBEDDING THEOREMS INTO LIPSCHITZ AND BMO SPACES AND APPLICATIONS TO QUASILINEAR SUBELLIPTIC DIFFERENTIAL EQUATIONS [J].
Lu, Guozhen .
PUBLICACIONS MATEMATIQUES, 1996, 40 (02) :301-329