Gradient regularity for elliptic equations in the Heisenberg group

被引:75
作者
Mingione, Giuseppe [1 ]
Zatorska-Goldstein, Anna [2 ]
Zhong, Xiao [3 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Warszawski, Inst Matemat Stosowanej & Mech, PL-02097 Warsaw, Poland
[3] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Heisenberg group; p-Laplacean; Weak solutions; Regularity; NONLINEAR SUBELLIPTIC EQUATIONS; QUASI-LINEAR EQUATIONS; DIFFERENTIAL EQUATIONS; VARIATIONAL INTEGRALS; VMO COEFFICIENTS; HORMANDER TYPE; WEAK SOLUTIONS; VECTOR-FIELDS; CARNOT GROUPS; MINIMIZERS;
D O I
10.1016/j.aim.2009.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves all issue raised in [J.J. Manfredi. G. Mingione, Regularity results tor quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485-544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C-L alpha-regularity for p-harmonic functions in the Heisenberg group for p near 2, in: Contemp. Math.. vol. 370, 2005, pp. 17-23]. In turn, using some recent techniques of Caffarelli and Peral [L. Caffarelli. I. Peral, On W-Lp estimates for elliptic equations in divergence Corm, Comm. Pure Appl. Math. 51 (1998) 1-21], the a priori estimates found are shown to imply the Suitable local Calderon-Zygmund theory for the related class of non-homogeneous, possibly degenerate equations, involving discontinuous coefficients. These last results extend to the sub-elliptic setting a few classical non-linear Euclidean results [T. Iwaniec. Projections onto gradient fields and L-p-estimates for degenerated elliptic operators, Studia Math. 75 (1983) 293-312; E. DiBenedetto, J.J. Manfredi, Oil the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math. 115 (1993) 1107-1134], and to the non-linear case estimates of the same nature that were available in the sub-elliptic setting only for solutions to linear equations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 129
页数:68
相关论文
共 48 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], 1996, Progress in Mathematics
[3]  
Bildhauer M, 2007, ANN SCUOLA NORM-SCI, V6, P385
[4]   Lp estimates for nonvariational hypoelliptic operators with VMO coefficients [J].
Bramanti, M ;
Brandolini, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) :781-822
[5]   Schauder estimates for parabolic nondivergence operators of Hormander type [J].
Bramanti, Marco ;
Brandolini, Luca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :177-245
[6]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[7]  
Capogna L, 1997, COMMUN PUR APPL MATH, V50, P867, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO
[8]  
2-3
[9]   Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hormander type [J].
Capogna, L ;
Garofalo, N .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (01) :1-40
[10]  
Capogna L, 1999, MATH ANN, V313, P263, DOI 10.1007/s002080050261