Existence of a ground state solution for Choquard equations involving critical Sobolev exponents

被引:0
作者
Li, Gui-Dong [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Choquard equation; Pokhozhaev-Palais-Smale sequence; variational method; positive ground state solution; critical growth; HARDY-LITTLEWOOD-SOBOLEV; SCALAR FIELD-EQUATIONS; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS;
D O I
10.4064/ap180204-23-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Choquard equation -Delta u + u = (I-alpha * F(u))f(u) + vertical bar u vertical bar(2)*(-2)u in R-N, where N >= 3, alpha is an element of(0, N), I-alpha is the Riesz potential and F(s) = integral(s)(0) f(t) dt. If f satisfies the general subcritical growth conditions, we obtain the existence of a positive ground state solution by a variational method.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 39 条
[1]   Existence of a ground state solution for a nonlinear scalar field equation with critical growth [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Montenegro, Marcelo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :537-554
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[7]  
CHABROWSKI J, 1992, REND CIRC MAT PALERM, V41, P413
[8]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041
[9]  
Gilbarg D., 2001, CLASSICS IN MATH
[10]  
Hirata J, 2010, TOPOL METHOD NONL AN, V35, P253