Calcineurin/NFAT signaling in osteoblasts regulates bone mass

被引:309
作者
Winslow, Monte M.
Pan, Minggui
Starbuck, Michael
Gallo, Elena M.
Deng, Lei
Karsenty, Gerard
Crabtree, Gerald R. [1 ]
机构
[1] Stanford Univ, Program Immunol, Stanford, CA 94305 USA
[2] Stanford Univ, Div Oncol, Stanford, CA 94305 USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Baylor Coll Med, Bone Dis Program Texas, Houston, TX 77030 USA
[5] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Dev Biol, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.devcel.2006.04.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here,we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Writ signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc,nuc mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
引用
收藏
页码:771 / 782
页数:12
相关论文
共 66 条
[1]   Autoamplification of NFATc1 expression determines its essential role in bone homeostasis [J].
Asagiri, M ;
Sato, K ;
Usami, T ;
Ochi, S ;
Nishina, H ;
Yoshida, H ;
Morita, I ;
Wagner, EF ;
Mak, TW ;
Serfling, E ;
Takayanagi, H .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (09) :1261-1269
[2]   OSTEOCLASTS DERIVED FROM HEMATOPOIETIC STEM-CELLS [J].
ASH, P ;
LOUTIT, JF ;
TOWNSEND, KMS .
NATURE, 1980, 283 (5748) :669-670
[3]   Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction [J].
Beals, CR ;
Clipstone, NA ;
Ho, SN ;
Crabtree, GR .
GENES & DEVELOPMENT, 1997, 11 (07) :824-834
[4]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342
[5]   T lymphocytes play a critical role in the development of cyclosporin A-induced osteopenia [J].
Buchinsky, FJ ;
Ma, YF ;
Mann, GN ;
Rucinski, B ;
Bryer, HP ;
Romero, DF ;
Jee, WSS ;
Epstein, S .
ENDOCRINOLOGY, 1996, 137 (06) :2278-2285
[6]   LEUKOCYTE-ENDOTHELIAL CELL RECOGNITION - 3 (OR MORE) STEPS TO SPECIFICITY AND DIVERSITY [J].
BUTCHER, EC .
CELL, 1991, 67 (06) :1033-1036
[7]   A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis [J].
Chang, CP ;
Neilson, JR ;
Bayle, JH ;
Gestwicki, JE ;
Kuo, A ;
Stankunas, K ;
Graef, IA ;
Crabtree, GR .
CELL, 2004, 118 (05) :649-663
[8]   NFAT signaling: Choreographing the social lives of cells [J].
Crabtree, GR ;
Olson, EN .
CELL, 2002, 109 :S67-S79
[9]   THE DELETERIOUS EFFECTS OF LONG-TERM CYCLOSPORINE-A, CYCLOSPORINE-G, AND FK506 ON BONE-MINERAL METABOLISM IN-VIVO [J].
CVETKOVIC, M ;
MANN, GN ;
ROMERO, DF ;
LIANG, XG ;
MA, YF ;
JEE, WSS ;
EPSTEIN, S .
TRANSPLANTATION, 1994, 57 (08) :1231-1237
[10]   A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development [J].
Ducy, P ;
Starbuck, M ;
Priemel, M ;
Shen, JH ;
Pinero, G ;
Geoffroy, V ;
Amling, M ;
Karsenty, G .
GENES & DEVELOPMENT, 1999, 13 (08) :1025-1036