Ising (conformal) fields and cluster area measures

被引:18
作者
Camia, Federico [1 ]
Newman, Charles M. [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
continuum scaling limit; critical Ising model; FK clusters; SLE; CLE; CRITICAL PERCOLATION; SCALING LIMITS; MODEL;
D O I
10.1073/pnas.0900700106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide a representation for the scaling limit of the d = 2 critical Ising magnetization field as a (conformal) random field by using Schramm-Loewner Evolution clusters and associated renormalized area measures. The renormalized areas are from the scaling limit of the critical Fortuin-Kasteleyn clusters and the random field is a convergent sum of the area measures with random signs. Extensions to off-critical scaling limits, to d = 3, and to Potts models are also considered.
引用
收藏
页码:5457 / 5463
页数:7
相关论文
共 41 条
[1]   Holder regularity and dimension bounds for random curves [J].
Aizenman, M ;
Burchard, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :419-453
[2]   On the number of incipient spanning clusters [J].
Aizenman, M .
NUCLEAR PHYSICS B, 1997, 485 (03) :551-582
[3]  
[Anonymous], 2007, Planar Ising correlations, volume 49 of Progress in Mathematical Physics
[4]  
BALINT A, 2007, ARXIV07083349V1MATHP
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]   Continuum nonsimple loops and 2D critical percolation [J].
Camia, F ;
Newman, CM .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :157-173
[7]  
Camia F., 2008, Probability, Geometry and Integrable Systems, P103
[8]   The scaling limit geometry of near-critical 2D percolation [J].
Camia, Federico ;
Fontes, Luiz Renato G. ;
Newman, Charles M. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (5-6) :1159-1175
[9]   Two-dimensional scaling limits via marked nonsimple loops [J].
Camia, Federico ;
Fontes, Luiz Renato G. ;
Newman, Charles M. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04) :537-559
[10]   Two-dimensional critical percolation: The full scaling limit [J].
Camia, Federico ;
Newman, Charles M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) :1-38