Lyapunov's inequality on timescales

被引:10
作者
Wong, Fu-Hsiang
Yu, Shiueh-Ling
Yeh, Cheh-Chih [1 ]
Lian, Wei-Cheng
机构
[1] Lunghwa Univ Sci & Technol, Dept Informat Management, Taoyuan 333, Taiwan
[2] Natl Taipei Teachers Coll, Dept Math, Taipei 10659, Taiwan
[3] St Johns & St Marys Inst Technol, Holist Educ Ctr, Taipei, Taiwan
[4] Natl Kaohsiung Inst Marine Technol, Dept Informat Management, Kaohsiung, Taiwan
关键词
timescales; Lyapunov's inequality;
D O I
10.1016/j.aml.2005.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to establish the timescale version of Lyapunov's inequality as follows: Let x (t) be a nontrivial solution of (r(t)x(Delta)(t))(Delta) + p(t)x(sigma)(t) = 0 on [a, b] satisfying x (a) = x (b) = 0. Then, under suitable conditions on p, r, a and b, we have [GRAPHICS] where p(+) (t) = max {p (t), 0}, f (t) = (t - a) (b - t) and d is an element of T satisfies \a+b/2 -d\= min{\a+b/2 -s\\s is an element of[a, b] boolean AND T} a+b/2 is an element of T. Here T is a timescale (see below). (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1293 / 1299
页数:7
相关论文
共 16 条
[1]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[2]  
Agarwal RP, 1992, Difference equations and inequalities
[3]   Lyapunov inequalities for time scales [J].
Bohner, M ;
Clark, S ;
Ridenhour, J .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (01) :61-77
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]  
CHENG SS, 1991, FASC MATH, V23, P25
[6]  
CLARK S, 1999, DYNAM SYSTEMS APPL, V8, P369
[7]  
COPPEL WA, 1971, LECT NOTES, V220
[9]  
ELIASON SB, 1970, J LONDON MATH SOC, V2, P461
[10]  
FINK D, 1969, J DIFFER EQUATIONS, V5, P314