Bivariate orthogonal polynomials in the Lyskova class

被引:5
|
作者
Alvarez de Morales, Maria
Fernandez, Lidia [1 ]
Perez, Teresa E.
Pinar, Miguel A.
机构
[1] Univ Granada, Dept Appl Math, E-18071 Granada, Spain
关键词
Classical orthogonal polynomials in two variables; Lyskova class; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.cam.2009.02.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical orthogonal polynomials in two variables can be characterized as the polynomial solutions of a matrix second-order partial differential equation involving matrix polynomial coefficients. In this work, we study classical orthogonal polynomials in two variables whose partial derivatives satisfy again a second-order partial differential equation of the same type. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 50 条
  • [1] A CLASS OF BIVARIATE ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULA
    XU, Y
    NUMERISCHE MATHEMATIK, 1994, 69 (02) : 233 - 241
  • [2] Three Term Relations for a Class of Bivariate Orthogonal Polynomials
    Marriaga, Misael
    Perez, Teresa E.
    Pinar, Miguel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [3] Three Term Relations for a Class of Bivariate Orthogonal Polynomials
    Misael Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2017, 14
  • [4] Classes of Bivariate Orthogonal Polynomials
    Ismail, Mourad E. H.
    Zhang, Ruiming
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [5] On bivariate classical orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael
    Perez, Teresa E.
    Pinar, Miguel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 340 - 357
  • [6] Bivariate orthogonal polynomials on triangular domains
    Rababah, Abedallah
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (01) : 107 - 111
  • [7] On Generating Discrete Orthogonal Bivariate Polynomials
    Marko Huhtanen
    Rasmus Munk Larsen
    BIT Numerical Mathematics, 2002, 42 : 393 - 407
  • [8] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Amílcar Branquinho
    Ana Foulquié-Moreno
    Teresa E. Pérez
    Mediterranean Journal of Mathematics, 2023, 20
  • [9] On generating discrete orthogonal bivariate polynomials
    Huhtanen, M
    Larsen, RM
    BIT NUMERICAL MATHEMATICS, 2002, 42 (02) : 393 - 407
  • [10] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18