Immunotherapy: Reshape the Tumor Immune Microenvironment

被引:294
作者
Lv, Bingzhe [1 ,2 ]
Wang, Yunpeng [1 ,2 ]
Ma, Dongjiang [1 ,2 ]
Cheng, Wei [1 ,2 ]
Liu, Jie [1 ,2 ]
Yong, Tao [1 ,2 ]
Chen, Hao [3 ,4 ]
Wang, Chen [1 ,3 ]
机构
[1] Lanzhou Univ, Dept Gen Surg, Hosp 2, Lanzhou, Peoples R China
[2] Lanzhou Univ, Clin Med Coll 2, Lanzhou, Peoples R China
[3] Lanzhou Univ, Key Lab Digest Syst Tumors Gansu Prov, Hosp 2, Lanzhou, Peoples R China
[4] Lanzhou Univ, Dept Surg Oncol, Hosp 2, Lanzhou, Peoples R China
关键词
tumor immune microenvironment; immunotherapy; immune cell; antibody; small molecule inhibitor; REGULATORY T-CELLS; CHIMERIC ANTIGEN RECEPTOR; FOCAL ADHESION KINASE; SUPPRESSOR-CELLS; SIPULEUCEL-T; CHECKPOINT BLOCKADE; ANTITUMOR IMMUNITY; ADVANCED MELANOMA; PD-1; EXPRESSION; DENDRITIC CELLS;
D O I
10.3389/fimmu.2022.844142
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
引用
收藏
页数:15
相关论文
共 226 条
[1]   Tim-3 finds its place in the cancer immunotherapy landscape [J].
Acharya, Nandini ;
Sabatos-Peyton, Catherine ;
Anderson, Ana Carrizosa .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (01)
[2]   IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor [J].
Adachi, Keishi ;
Kano, Yosuke ;
Nagai, Tomohiko ;
Okuyama, Namiko ;
Sakoda, Yukimi ;
Tamada, Koji .
NATURE BIOTECHNOLOGY, 2018, 36 (04) :346-+
[3]   A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab [J].
Adusumilli, Prasad S. ;
Zauderer, Marjorie G. ;
Riviere, Isabelle ;
Solomon, Stephen B. ;
Rusch, Valerie W. ;
O'Cearbhaill, Roisin E. ;
Zhu, Amy ;
Cheema, Waseem ;
Chintala, Navin K. ;
Halton, Elizabeth ;
Pineda, John ;
Perez-Johnston, Rocio ;
Tan, Kay See ;
Daly, Bobby ;
Araujo Filho, Jose A. ;
Ngai, Daniel ;
McGee, Erin ;
Vincent, Alain ;
Diamonte, Claudia ;
Sauter, Jennifer L. ;
Modi, Shanu ;
Sikder, Devanjan ;
Senechal, Brigitte ;
Wang, Xiuyan ;
Travis, William D. ;
Gonen, Mithat ;
Rudin, Charles M. ;
Brentjens, Renier J. ;
Jones, David R. ;
Sadelain, Michel .
CANCER DISCOVERY, 2021, 11 (11) :2748-2763
[4]   Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy [J].
Albini, Adriana ;
Bruno, Antonino ;
Noonan, Douglas M. ;
Mortara, Lorenzo .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[5]   Vaccines Combined with Immune Checkpoint Antibodies Promote Cytotoxic T-cell Activity and Tumor Eradication [J].
Ali, Omar A. ;
Lewin, Sarah A. ;
Dranoff, Glenn ;
Mooney, David J. .
CANCER IMMUNOLOGY RESEARCH, 2016, 4 (02) :95-100
[6]   Macrophage-Based Approaches for Cancer Immunotherapy [J].
Anderson, Nicholas R. ;
Minutolo, Nicholas G. ;
Gill, Saar ;
Klichinsky, Michael .
CANCER RESEARCH, 2021, 81 (05) :1201-1208
[7]   Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma [J].
Antonios, Joseph P. ;
Soto, Horacio ;
Everson, Richard G. ;
Moughon, Diana ;
Orpilla, Joey R. ;
Shin, Namjo P. ;
Sedighim, Shaina ;
Treger, Janet ;
Odesa, Sylvia ;
Tucker, Alexander ;
Yong, William H. ;
Li, Gang ;
Cloughesy, Timothy F. ;
Liau, Linda M. ;
Prins, Robert M. .
NEURO-ONCOLOGY, 2017, 19 (06) :796-807
[8]  
Ascierto PA., 2017, Ann Oncol, V28, P611, DOI 10.1093/annonc/mdx440.011
[9]   Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma [J].
Atkinson, Victoria ;
Khattak, Adnan ;
Haydon, Andrew ;
Eastgate, Melissa ;
Roy, Amitesh ;
Prithviraj, Prashanth ;
Mueller, Christian ;
Brignone, Chrystelle ;
Triebel, Frederic .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[10]   Inhibition of CD39 Enzymatic Function at the Surface of Tumor Cells Alleviates Their Immunosuppressive Activity [J].
Bastid, Jeremy ;
Regairaz, Anne ;
Bonnefoy, Nathalie ;
Dejou, Cecile ;
Giustiniani, Jerome ;
Laheurte, Caroline ;
Cochaud, Stephanie ;
Laprevotte, Emilie ;
Funck-Brentano, Elisa ;
Hemon, Patrice ;
Gros, Laurent ;
Bec, Nicole ;
Larroque, Christian ;
Alberici, Gilles ;
Bensussan, Armand ;
Eliaou, Jean-Francois .
CANCER IMMUNOLOGY RESEARCH, 2015, 3 (03) :254-265