Splitting methods for the time-dependent Schrodinger equation

被引:54
作者
Blanes, S
Moan, PC [1 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 9EW, England
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
time-dependent Schrodinger equation; time-dependent Hamiltonian; splitting methods; Magnus expansion; symplectic; lie series;
D O I
10.1016/S0375-9601(99)00866-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cheap and easy to implement fourth-order methods for the Schrodinger equation with time-dependent Hamiltonians are introduced. The methods require evaluations of exponentials of simple unidimensional integrals, and can be considered an averaging technique, preserving many of the qualitative properties of the exact solution. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 20 条
[1]  
BLANES S, 1999, 1998NA08 DAMTP U CAM
[2]  
BLANES S, IN PRESS
[3]   UNITARY INTEGRATORS AND APPLICATIONS TO CONTINUOUS ORTHONORMALIZATION TECHNIQUES [J].
DIECI, L ;
RUSSELL, RD ;
VANVLECK, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) :261-281
[4]   THE LINEARLY DRIVEN PARAMETRIC OSCILLATOR - APPLICATION TO COLLISIONAL ENERGY-TRANSFER [J].
GAZDY, B ;
MICHA, DA .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (11) :4926-4936
[5]   GENERALIZED PROPAGATION TECHNIQUES FOR LONGITUDINALLY VARYING REFRACTIVE-INDEX DISTRIBUTIONS [J].
GLASNER, M ;
YEVICK, D ;
HERMANSSON, B .
MATHEMATICAL AND COMPUTER MODELLING, 1992, 16 (10) :177-182
[6]   Symplectic integrators tailored to the time-dependent Schrodinger equation [J].
Gray, SK ;
Manolopoulos, DE .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (18) :7099-7112
[7]   Exponential integrators for quantum-classical molecular dynamics [J].
Hochbruck, M ;
Lubich, C .
BIT, 1999, 39 (04) :620-645
[8]   On the solution of linear differential equations in Lie groups [J].
Iserles, A ;
Norsett, SP .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :983-1019
[9]  
ISERLES A, 1997, 1997NA22 DAMTP U CAM
[10]   A COMPARISON OF DIFFERENT PROPAGATION SCHEMES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
LEFORESTIER, C ;
BISSELING, RH ;
CERJAN, C ;
FEIT, MD ;
FRIESNER, R ;
GULDBERG, A ;
HAMMERICH, A ;
JOLICARD, G ;
KARRLEIN, W ;
MEYER, HD ;
LIPKIN, N ;
RONCERO, O ;
KOSLOFF, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) :59-80