Shift based adaptive differential evolution for PID controller designs using swarm intelligence algorithm

被引:5
作者
Zhang, Xiu [1 ,2 ]
Zhang, Xin [1 ,2 ]
机构
[1] Tianjin Normal Univ, Coll Elect & Commun Engn, Tianjin, Peoples R China
[2] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2017年 / 20卷 / 01期
基金
美国国家科学基金会;
关键词
PID control; Differential evolution; Parameter control; Swarm intelligence; Shift based operation; BEE COLONY ALGORITHM; OPTIMIZATION; SYSTEM; OPPOSITION; STRATEGY;
D O I
10.1007/s10586-016-0683-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Proportional-integral-derivative (PID) controllers are the most popular control systems equipped in industries due to their simplicity, effectiveness, and functionality. In this article, an adaptive differential evolution (DE) algorithm is presented to tune controller parameters of PID systems. The proposed algorithm uses shift based parameter control and pseudo population reduction procedures. All algorithmic parameters of DE are adapted and no additional parameter is introduced. A set of three typical control instances is taken to study the performance of the proposed algorithm. Four recently reported DE algorithms are chosen as baselines. Through numerical experiment, it turns out that the proposed algorithm yields better performance than the four baseline DE algorithms. Moreover, the proposed algorithm has a better scalability and reliability than other test algorithms.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 39 条
[1]   PID control system analysis, design, and technology [J].
Ang, KH ;
Chong, G ;
Li, Y .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (04) :559-576
[2]   Optimal ND plus fuzzy controller design for a PEM fuel cell air feed system using the self-adaptive differential evolution algorithm [J].
Beirami, Hamed ;
Shabestari, Ali Zargar ;
Zerafat, Mohammad Mahdi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (30) :9422-9434
[3]   Population size reduction for the differential evolution algorithm [J].
Brest, Janez ;
Maucec, Mirjam Sepesy .
APPLIED INTELLIGENCE, 2008, 29 (03) :228-247
[4]   A multi-crossover genetic approach to multivariable PID controllers tuning [J].
Chang, Wei-Der .
EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (03) :620-626
[5]   Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning [J].
Coelho, Leandro dos Santos ;
Mariani, Viviana Cocco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (08) :2371-2382
[6]   A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map [J].
Coelho, Leandro dos Santos ;
Pessoa, Marcelo Wicthoff .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) :13694-13701
[7]   Circle detection using discrete differential evolution optimization [J].
Cuevas, Erik ;
Zaldivar, Daniel ;
Perez-Cisneros, Marco ;
Ramirez-Ortegon, Marte .
PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (01) :93-107
[8]   Chaos driven evolutionary algorithms for the task of PID control [J].
Davendra, Donald ;
Zelinka, Ivan ;
Senkerik, Roman .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (04) :1088-1104
[9]  
El-Abd M, 2011, GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P109
[10]   Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators [J].
Epitropakis, Michael G. ;
Tasoulis, Dimitris K. ;
Pavlidis, Nicos G. ;
Plagianakos, Vassilis P. ;
Vrahatis, Michael N. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :99-119