Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging

被引:3
|
作者
Salski, Bartlomiej [1 ]
Gwarek, Wojciech [2 ]
机构
[1] QWED, Warsaw, Poland
[2] Warsaw Univ Technol, Inst Radioelect, PL-00661 Warsaw, Poland
关键词
D O I
10.1364/AO.48.002133
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Full-wave electromagnetic analysis by the finite-difference time-domain (FDTD) method is combined with the scalar diffraction method to obtain a numerical tool for optical lens imaging. The FDTD method is applied to the modeling of scattering phenomenon in the vicinity of a target. Afterward, obtained results are coupled with the Fresnel diffraction method to project an image through the lens onto the image plane. The FDTD algorithm is able to provide the solution of the electromagnetic analysis of the target with all its geometrical complexity. It is also relatively effective, since it allows the arbitrarily shaped geometry of the target to be analyzed in a specified spectrum range with only one simulation run. Such coupled FDTD-Fresnel modeling exploits the advantages of both methods, maintaining the required accuracy and speeding up the overall computation of the image. (C) 2009 Optical Society of America
引用
收藏
页码:2133 / 2138
页数:6
相关论文
共 50 条
  • [1] CONFORMAL HYBRID FINITE-DIFFERENCE TIME-DOMAIN AND FINITE-VOLUME TIME-DOMAIN
    YEE, KS
    CHEN, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (10) : 1450 - 1454
  • [2] HYBRID FINITE-VOLUME FINITE-DIFFERENCE TIME-DOMAIN MODELING OF CURVED SURFACES
    SINGH, B
    MARVIN, AC
    ELECTRONICS LETTERS, 1995, 31 (05) : 352 - 353
  • [3] Finite-difference time-domain modeling of thin shields
    Feliziani, M
    Maradei, F
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 848 - 851
  • [4] FINITE-DIFFERENCE TIME-DOMAIN MODELING OF CURVED SURFACES
    JURGENS, TG
    TAFLOVE, A
    UMASHANKAR, K
    MOORE, TG
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (04) : 357 - 366
  • [5] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [6] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [7] Time-domain finite-difference modeling for attenuative anisotropic media
    Bai, Tong
    Tsvankin, Ilya
    GEOPHYSICS, 2016, 81 (02) : C69 - C77
  • [8] ELECTROMAGNETIC MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    DUCEAU, E
    RECHERCHE AEROSPATIALE, 1994, (05): : 301 - 317
  • [9] Modeling SPR sensors with the finite-difference time-domain method
    Christensen, D
    Fowers, D
    BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7): : 677 - 684
  • [10] On the Stability of the Finite-Difference Time-Domain Modeling of Lorentz Media
    Panaretos, Anastasios H.
    Diaz, Rodolfo E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2011, 21 (06) : 283 - 285