Multi-scale analysis of SPDEs with degenerate additive noise

被引:19
作者
Mohammed, Wael W. [1 ]
Bloemker, Dirk [2 ]
Klepel, Konrad [2 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
关键词
Amplitude equation; multi-scale analysis; stabilization; stochastic partial differential equations; degenerate noise; EQUATION;
D O I
10.1007/s00028-013-0213-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quite general class of stochastic partial differential equations with quadratic and cubic nonlinearities and derive rigorously amplitude equations, using the natural separation of time-scales near a change of stability. We show that degenerate additive noise has the potential to stabilize or destabilize the dynamics of the dominant modes, due to additional deterministic terms arising in averaging. We focus on equations with quadratic and cubic nonlinearities and give applications to the Burgers' equation, the Ginzburg-Landau equation, and generalized Swift-Hohenberg equation.
引用
收藏
页码:273 / 298
页数:26
相关论文
共 23 条
  • [11] A note on maximal inequality for stochastic convolutions
    Hausenblas, E
    Seidler, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 785 - 790
  • [12] Henry D., 1981, GEOMETRIC THEORY SEM
  • [13] EFFECTS OF ADDITIVE NOISE AT THE ONSET OF RAYLEIGH-BENARD CONVECTION
    HOHENBERG, PC
    SWIFT, JB
    [J]. PHYSICAL REVIEW A, 1992, 46 (08): : 4773 - 4785
  • [14] Additive noise may change the stability of nonlinear systems
    Hutt, A.
    [J]. EPL, 2008, 84 (03)
  • [15] Additive global noise delays turing bifurcations
    Hutt, Axel
    Longtin, Andre
    Schimansky-Geier, Lutz
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [16] Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation
    Hutt, Axel
    Longtin, Andre
    Schimansky-Geier, Lutz
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (06) : 755 - 773
  • [17] Amplitude equation for the generalized Swift-Hohenberg equation with noise
    Klepel, Konrad
    Bloemker, Dirk
    Mohammed, Wael W.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1107 - 1126
  • [18] Pazy A., 1993, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
  • [19] Additive noise effects in active nonlinear spatially extended systems
    Pradas, M.
    Pavliotis, G. A.
    Kalliadasis, S.
    Papageorgiou, D. T.
    Tseluiko, D.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 563 - 591
  • [20] Prevot C, 2007, LECT NOTES MATH, V1905, P1, DOI 10.1007/978-3-540-70781-3