Extensive low-affinity transcriptional interactions in the yeast genome

被引:188
作者
Tanay, Amos [1 ]
机构
[1] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
关键词
D O I
10.1101/gr.5113606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Major experimental and computational efforts are targeted at the characterization of transcriptional networks on a genomic scale. The ultimate goal of many of these studies is to construct networks associating transcription factors with genes via well-defined binding sites. Weaker regulatory interactions other than those occurring at high-affinity binding sites are largely ignored and are not well understood. Here I show that low-affinity interactions are abundant in vivo and quantifiable from current high-throughput ChIP experiments. I develop algorithms that predict DNA-binding energies from sequences and ChIP data across a wide dynamic range of affinities and use them to reveal widespread functionality of low-affinity transcription factor binding. Evolutionary analysis suggests that binding energies of many transcription factors are conserved even in promoters lacking classical binding sites. Gene expression analysis shows that such promoters can generate significant expression. I estimate that while only a small percentage of the genome is strongly regulated by a typical transcription factor, up to an order of magnitude more may be involved in weaker interactions. Low-affinity transcription factor-DNA interaction may therefore be important both evolutionarily and functionally.
引用
收藏
页码:962 / 972
页数:11
相关论文
共 44 条
[1]   Transcriptional regulation by the numbers: models [J].
Bintu, L ;
Buchler, NE ;
Garcia, HG ;
Gerland, U ;
Hwa, T ;
Kondev, J ;
Phillips, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :116-124
[2]   Evolutionary comparisons suggest many novel cAMP response protein binding sites in Escherichia coli [J].
Brown, CT ;
Callan, CG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2404-2409
[3]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[4]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[5]   Finding functional features in Saccharomyces genomes by phylogenetic footprinting [J].
Cliften, P ;
Sudarsanam, P ;
Desikan, A ;
Fulton, L ;
Fulton, B ;
Majors, J ;
Waterston, R ;
Cohen, BA ;
Johnston, M .
SCIENCE, 2003, 301 (5629) :71-76
[6]   THE DAL82 PROTEIN OF SACCHAROMYCES-CEREVISIAE BINDS TO THE DAL UPSTREAM INDUCTION SEQUENCE (UIS) [J].
DORRINGTON, RA ;
COOPER, TG .
NUCLEIC ACIDS RESEARCH, 1993, 21 (16) :3777-3784
[7]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[8]   Physical constraints and functional characteristics of transcription factor-DNA interaction [J].
Gerland, U ;
Moroz, JD ;
Hwa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12015-12020
[9]   Explicit equilibrium modeling of transcription-factor binding and gene regulation [J].
Granek, JA ;
Clarke, ND .
GENOME BIOLOGY, 2005, 6 (10)
[10]   Transcriptional regulatory code of a eukaryotic genome [J].
Harbison, CT ;
Gordon, DB ;
Lee, TI ;
Rinaldi, NJ ;
Macisaac, KD ;
Danford, TW ;
Hannett, NM ;
Tagne, JB ;
Reynolds, DB ;
Yoo, J ;
Jennings, EG ;
Zeitlinger, J ;
Pokholok, DK ;
Kellis, M ;
Rolfe, PA ;
Takusagawa, KT ;
Lander, ES ;
Gifford, DK ;
Fraenkel, E ;
Young, RA .
NATURE, 2004, 431 (7004) :99-104