Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: Thermodynamics of binding and structural changes of the bilayer

被引:93
作者
Wenk, MR [1 ]
Alt, T [1 ]
Seelig, A [1 ]
Seelig, J [1 ]
机构
[1] UNIV BASEL,BIOCTR,DEPT BIOPHYS CHEM,CH-4056 BASEL,SWITZERLAND
关键词
D O I
10.1016/S0006-3495(97)78818-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The interaction of the nonionic detergent octyl-beta-D-glucopyranoside (OG) with lipid bilayers was studied with high-sensitivity isothermal titration calorimetry (ITC) and solid-state H-2-NMR spectroscopy. The transfer of OG from the aqueous phase to lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be investigated by employing detergent at concentrations below the critical micellar concentration; it can be defined by a surface partition equilibrium with a partition coefficient of K = 120 +/- 10 M(-1), a molar binding enthalpy of Delta H-D degrees = 1.3 +/- 0.15 kcal/mol, and a free energy of binding of Delta G(D) degrees = -5.2 kcal/mol. The heat of transfer is temperature dependent, with a molar heat capacity of Delta C-p = -75 cal K-1 mol(-1). The large heat capacity and the near-zero Delta H are typical for a hydrophobic binding equilibrium. The partition constant K decreased to similar to 100 M(-1) for POPC membranes mixed with either negatively charged lipids or cholesterol, but was independent of membrane curvature. In contrast, a much larger variation was observed in the partition enthalpy. Delta H-D degrees increased by about 50% for large vesicles and by 75% for membranes containing 50 mol% cholesterol. Structural changes in the lipid bilayer were investigated with solid-state H-2-NMR. POPC was selectively deuterated at the headgroup segments and at different positions of the fatty acyl chains, and the measurement of the quadrupolar splittings provided information on the conformation and the order of the bilayer membrane. Addition of OG had almost no influence on the lipid headgroup region, even at concentrations close to bilayer disruption. In contrast, the fluctuations of fatty acyl chain segments located in the inner part of the bilayer increased strongly with increasing OG concentration. The H-2-NMR results demonstrate that the headgroup region is the most stable structural element of the lipid membrane, remaining intact until the disordering of the chains reaches a critical limit. The perturbing effect of OG is thus different from that of another nonionic detergent, octaethyleneglycol mono-n-dodecylether (C(12)E(8)), which produces a general disordering at all levels of the lipid bilayer. The OG-POPC interaction was also investigated with POPC monolayers, using a Langmuir trough. In the absence of lipid, the measurement of the Gibbs adsorption isotherm for pure OG solutions yielded an OG surface area of A(S) = 51 +/- 3 Angstrom(2). On the other hand, the insertion area A(I) of OG in a POPC monolayer was determined by a monolayer expansion technique as A(I) = 58 +/- 10 Angstrom(2). The similar area requirements with A(S) approximate to A(I) indicate an almost complete insertion of OG into the lipid monolayer. The OG partition constant for a POPC monolayer at 32 mN/m was K-p approximate to 320 M(-1) and thus was larger than that for a POPC bilayer.
引用
收藏
页码:1719 / 1731
页数:13
相关论文
共 46 条
[1]   STATES OF AGGREGATION AND PHASE-TRANSFORMATIONS IN MIXTURES OF PHOSPHATIDYLCHOLINE AND OCTYL GLUCOSIDE [J].
ALMOG, S ;
LITMAN, BJ ;
WIMLEY, W ;
COHEN, J ;
WACHTEL, EJ ;
BARENHOLZ, Y ;
BENSHAUL, A ;
LICHTENBERG, D .
BIOCHEMISTRY, 1990, 29 (19) :4582-4592
[2]   CA-2+ BINDING TO PHOSPHATIDYLCHOLINE BILAYERS AS STUDIED BY DEUTERIUM MAGNETIC-RESONANCE - EVIDENCE FOR THE FORMATION OF A CA-2+ COMPLEX WITH 2 PHOSPHOLIPIDMOLECULES [J].
ALTENBACH, C ;
SEELIG, J .
BIOCHEMISTRY, 1984, 23 (17) :3913-3920
[3]   INTERACTION OF ELECTRIC DIPOLES WITH PHOSPHOLIPID HEAD GROUPS - A H-2 AND P-31 NMR-STUDY OF PHLORETIN AND PHLORETIN ANALOGS IN PHOSPHATIDYLCHOLINE MEMBRANES [J].
BECHINGER, B ;
SEELIG, J .
BIOCHEMISTRY, 1991, 30 (16) :3923-3929
[4]   COMPARATIVE-STUDY OF THE PHASE-TRANSITIONS OF PHOSPHOLIPID-BILAYERS AND MONOLAYERS [J].
BLUME, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 557 (01) :32-44
[5]   EFFECT OF MONOLAYER SURFACE PRESSURE ON THE ACTIVITIES OF PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE-C-BETA-1, PHOSPHOLIPASE-C-GAMMA-1, AND PHOSPHOLIPASE-C-DELTA-1 [J].
BOGUSLAVSKY, V ;
REBECCHI, M ;
MORRIS, AJ ;
JHON, DY ;
RHEE, SG ;
MCLAUGHLIN, S .
BIOCHEMISTRY, 1994, 33 (10) :3032-3037
[6]  
BOTTCHER CJF, 1961, ANAL CHIM ACTA, V24, P203
[7]  
CANTOR CR, 1980, BIOPHYSICAL CHEM, V1, P279
[8]   SYNTHESIS AND PROPERTIES OF ALKYLGLUCOSIDES WITH MILD DETERGENT ACTION - IMPROVED SYNTHESIS AND PURIFICATION OF BETA-1-OCTYL-GLUCOSE, BETA-1-NONYL-GLUCOSE AND BETA-1-DECYL-GLUCOSE - SYNTHESIS OF BETA-1-UNDECYLGLUCOSE AND BETA-1-DODECYLMALTOSE [J].
DEGRIP, WJ ;
BOVEEGEURTS, PHM .
CHEMISTRY AND PHYSICS OF LIPIDS, 1979, 23 (04) :321-335
[9]  
DELAMAZA A, 1994, EUR J BIOCHEM, V226, P1029
[10]   COMPOSITION OF OCTYL GLUCOSIDE PHOSPHATIDYLCHOLINE MIXED MICELLES [J].
EIDELMAN, O ;
BLUMENTHAL, R ;
WALTER, A .
BIOCHEMISTRY, 1988, 27 (08) :2839-2846