A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization

被引:59
作者
Vashisth, Priya [1 ]
Nikhil, Kumar [1 ]
Roy, Partha [1 ]
Pruthi, Parul A. [1 ]
Singh, Rajesh P. [1 ]
Pruthi, Vikas [1 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Roorkee 247667, Uttarakhand, India
关键词
Gellan; PVA; Skin tissue regeneration; Scaffold; Electrospinning; Nanofibers; NANOSTRUCTURES; CELLS;
D O I
10.1016/j.carbpol.2015.09.113
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 32 条
[1]   Progress in the Field of Electrospinning for Tissue Engineering Applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
ADVANCED MATERIALS, 2009, 21 (32-33) :3343-3351
[2]   Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol [J].
Agnihotri, SA ;
Aminabhavi, TM .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2005, 31 (06) :491-503
[3]  
Bajaj IB, 2007, FOOD TECHNOL BIOTECH, V45, P341
[4]   Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications [J].
Bhat, Sumrita ;
Kumar, Ashok .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2012, 114 (06) :663-670
[5]   Electrospun chitosan-based nanofibers and their cellular compatibility [J].
Bhattarai, N ;
Edmondson, D ;
Veiseh, O ;
Matsen, FA ;
Zhang, MQ .
BIOMATERIALS, 2005, 26 (31) :6176-6184
[6]   Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties [J].
Bhattarai, Narayan ;
Li, Zhensheng ;
Edmondson, Dennis ;
Zhang, Miqin .
ADVANCED MATERIALS, 2006, 18 (11) :1463-+
[7]   Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution [J].
Chong, E. J. ;
Phan, T. T. ;
Lim, I. J. ;
Zhang, Y. Z. ;
Bay, B. H. ;
Ramakrishna, S. ;
Lim, C. T. .
ACTA BIOMATERIALIA, 2007, 3 (03) :321-330
[8]   Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications [J].
Ciardelli, G ;
Chiono, V ;
Vozzi, G ;
Pracella, M ;
Ahluwalia, A ;
Barbani, N ;
Cristallini, C ;
Giusti, P .
BIOMACROMOLECULES, 2005, 6 (04) :1961-1976
[9]   Self-Assembly of Peptide Amphiphiles: From Molecules to Nanostructures to Biomaterials [J].
Cui, Honggang ;
Webber, Matthew J. ;
Stupp, Samuel I. .
BIOPOLYMERS, 2010, 94 (01) :1-18
[10]   Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method [J].
Gautam, Sneh ;
Dinda, Amit Kumar ;
Mishra, Narayan Chandra .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (03) :1228-1235