Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates

被引:45
作者
Mao, Dong
Shen, Lihua
Zhou, Aihui
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
a posteriori error estimate; adaptive algorithm; eigenvalue; finite element; local averaging;
D O I
10.1007/s10444-004-7617-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes.
引用
收藏
页码:135 / 160
页数:26
相关论文
共 37 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Ainsworth M., 2000, A Posterior Error Estimation in Finite Element Analysis
[3]  
[Anonymous], NUMERICAL METHODS PA
[4]   Locally adapted tetrahedral meshes using bisection [J].
Arnold, DN ;
Mukherjee, A ;
Pouly, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :431-448
[5]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[6]   VALIDATION OF A-POSTERIORI ERROR ESTIMATORS BY NUMERICAL APPROACH [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK ;
COPPS, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (07) :1073-1123
[7]   REGULARITY AND NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS WITH PIECEWISE ANALYTIC DATA [J].
BABUSKA, I ;
GUO, BQ ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1534-1560
[8]  
Babuska I., 1991, Finite Element Methods, V2, P641
[9]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[10]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135