Higher-order self-adjoint boundary-value problems on time scales

被引:32
作者
Anderson, Douglas R.
Guseinov, Gusein Sh.
Hoffacker, Joan
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Connecticut Coll, Dept Math & Comp Sci, Moorhead, MN 56562 USA
[3] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
time scales; self-adjoint boundary-value problem; symmetric Green's function;
D O I
10.1016/j.cam.2005.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, higher-order self-adjoint differential expressions on time scales and their associated self-adjoint boundary conditions are discussed. The symmetry property of the corresponding Green's functions is shown, together with specific formulas of Green's functions for select time scales. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 342
页数:34
相关论文
共 28 条
[1]   Variable change for Sturm-Liouville differential expressions on time scales [J].
Ahlbrandt, C ;
Bohner, M ;
Voepel, T .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (01) :93-107
[2]   An even-order three-point boundary value problem on time scales [J].
Anderson, DR ;
Avery, RI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) :514-525
[3]  
Anderson DR, 2003, DYN SYST APPL, V12, P9
[4]  
Anderson DR, 2003, MATH COMPUT MODEL, V38, P481, DOI 10.1016/S0895-7177(03)00244-9
[5]  
ANDERSON DR, UNPUB EXISTENCE SOLU
[6]  
ANDERSON DR, 2002, MATH COMPUT MODEL, V31, P29
[7]   Editorial - The dark side of the moon: Applicant perspectives, negative psychological effects (NPEs), and candidate decision making in selection [J].
Anderson, N .
INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT, 2004, 12 (1-2) :1-8
[8]  
[Anonymous], 1968, LINEAR DIFFERENTIAL
[9]   On Green's functions and positive solutions for boundary value problems on time scales [J].
Atici, FM ;
Guseinov, GS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :75-99
[10]  
AULBACH B, 1990, NONLINEAR DYNAMICS Q, P9