Photon- and Charge-Management in Advanced Energy Materials: Combining 0D, 1D, and 2D Nanocarbons as well as Bulk Semiconductors with Organic Chromophores

被引:14
作者
Cadranel, Alejandro [1 ,2 ,3 ]
Haines, Philipp [1 ]
Kaur, Ramandeep [1 ]
Menon, Arjun [1 ]
Muenich, Peter W. [1 ]
Schol, Peter R. [1 ]
Guldi, Dirk M. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Pharm, Interdisciplinary Ctr Mol Mat, Egerlandstr 3, D-91058 Erlangen, Germany
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis, Pabellon 2,Ciudad Univ,C1428EHA, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, CONICET, Inst Quim Fis Mat Medio Ambiente Energia INQUIMAE, Pabellon 2,Ciudad Univ,C1428EHA, Buenos Aires, DF, Argentina
关键词
charge management; nanocarbons; photon management; solar‐ energy conversion; WALLED CARBON NANOTUBES; PHOTOINDUCED ELECTRON-TRANSFER; HEXA-PERI-HEXABENZOCORONENE; TRANSFER EXCITED-STATES; PHOTOPHYSICAL PROPERTIES; SUPRAMOLECULAR SYSTEMS; TRANSFER CHEMISTRY; MOLECULAR WIRES; QUANTUM DOTS; FULLERENES;
D O I
10.1002/aenm.202002831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this contribution, seminal works in the area of photon- and charge-management are highlighted with focus on covalent electron donor-acceptor conjugates built around porphyrins (Ps), on one hand, and 0D, 1D, and 2D nanocarbons, on the other hand. Photons in these conjugates are managed by Ps, while 0D, 1D, and 2D nanocarbons serve as the active component, which enable managing charges. With a few leading examples, it can be explored much beyond the simple photon- and charge-management characterization and emphasize photovoltaics and photocatalysis to convert and store energy. This contribution concludes by highlighting recent progress in mixing and matching the unique charge-management features of nanocarbons in the design of multidimensional nanocarbons.
引用
收藏
页数:25
相关论文
共 146 条
[41]   Multifunctional molecular carbon materials - from fullerenes to carbon nanotubes [J].
Guldi, DM ;
Rahman, A ;
Sgobba, V ;
Ehli, C .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (05) :471-487
[42]   Charge-transfer in a π-stacked fullerene porphyrin dyad:: evidence for back electron transfer in the 'Marcus-inverted' region [J].
Guldi, DM ;
Luo, CP ;
Prato, M ;
Dietel, E ;
Hirsch, A .
CHEMICAL COMMUNICATIONS, 2000, (05) :373-374
[43]   Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models [J].
Guldi, DM .
CHEMICAL SOCIETY REVIEWS, 2002, 31 (01) :22-36
[44]   Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor-acceptor nanohybrid [J].
Guo, Zhen ;
Du, Feng ;
Ren, Dongmei ;
Chen, Yongsheng ;
Zheng, Jianyu ;
Liu, Zhibo ;
Tian, Jianguo .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (29) :3021-3030
[45]   Mimicking photosynthetic solar energy transduction [J].
Gust, D ;
Moore, TA ;
Moore, AL .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (01) :40-48
[46]   Photochemistry of supramolecular systems containing C60 [J].
Gust, D ;
Moore, TA ;
Moore, AL .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2000, 58 (2-3) :63-71
[47]   Fullerenes linked to photosynthetic pigments [J].
Gust, D ;
Moore, TA ;
Moore, AL .
RESEARCH ON CHEMICAL INTERMEDIATES, 1997, 23 (07) :621-651
[48]   MOLECULAR MIMICRY OF PHOTOSYNTHETIC ENERGY AND ELECTRON-TRANSFER [J].
GUST, D ;
MOORE, TA ;
MOORE, AL .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :198-205
[49]   Solar Fuels via Artificial Photosynthesis [J].
Gust, Devens ;
Moore, Thomas A. ;
Moore, Ana L. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (12) :1890-1898
[50]  
Haines P., UNPUB