Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions

被引:39
作者
Bork, L. V. [2 ,4 ]
Kazakov, D. I. [1 ,2 ,3 ]
Kompaniets, M. V. [5 ]
Tolkachev, D. M. [1 ,7 ]
Vlasenko, D. E. [1 ,6 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, Russia
[2] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[4] All Russian Inst Automat, Ctr Fundamental & Appl Res, Moscow, Russia
[5] St Petersburg State Univ, St Petersburg 199034, Russia
[6] Southern Fed State Univ, Dept Phys, Rostov Na Donu, Russia
[7] Gomel State Univ, Dept Phys, Gomel, BELARUS
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2015年 / 11期
关键词
Scattering Amplitudes; Field Theories in Higher Dimensions; Extended Supersymmetry; Renormalization Group; SCATTERING-AMPLITUDES; PROGRESS; SYM;
D O I
10.1007/JHEP11(2015)059
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The main aim of this paper is to study the scattering amplitudes in gauge field theories with maximal supersymmetry in dimensions D = 6; 8 and 10. We perform a systematic study of the leading ultraviolet divergences using the spinor helicity and on-shell momentum superspace framework. In D = 6 the first divergences start at 3 loops and we calculate them up to 5 loops, in D = 8; 10 the first divergences start at 1 loop and we calculate them up to 4 loops. The leading divergences in a given order are the polynomials of Mandelstam variables. To be on the safe side, we check our analytical calculations by numerical ones applying the alpha-representation and the dedicated routines. Then we derive an analog of the RG equations for the leading pole that allows us to get the recursive relations and construct the generating procedure to obtain the polynomials at any order of perturbation theory (PT). At last, we make an attempt to sum the PT series and derive the differential equation for the infinite sum. This equation possesses a fixed point which might be stable or unstable depending on the kinematics. Some consequences of these fixed points are discussed.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
[1]  
Abramovsky V. A., 1979, PREPRINT
[2]  
[Anonymous], ARXIV09021552
[3]  
Banks T., ARXIV12055768
[4]   Exacting N=4 superconformal symmetry [J].
Bargheer, Till ;
Beisert, Niklas ;
Galleas, Wellington ;
Loebbert, Florian ;
McLoughlin, Tristan .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11)
[5]   Spacetime and Flux Tube S-Matrices at Finite Coupling for N=4 Supersymmetric Yang-Mills Theory [J].
Basso, Benjamin ;
Sever, Amit ;
Vieira, Pedro .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[6]   E7(7) constraints on counterterms in N=8 supergravity [J].
Beisert, N. ;
Elvang, H. ;
Freedman, D. ;
Kiermaier, M. ;
Morales, A. ;
Stieberger, S. .
PHYSICS LETTERS B, 2010, 694 (03) :265-271
[7]  
Beisert N., ARXIV10045423
[8]  
Beisert N, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2010)085
[9]  
Bern Z, 2011, SUBNUCL SER, V46, P251
[10]   Five-Loop Four-Point Amplitude of N=4 Super-Yang-Mills Theory [J].
Bern, Z. ;
Carrasco, J. J. M. ;
Johansson, H. ;
Roiban, R. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)