Fast contingency selection through a pattern analysis approach

被引:12
作者
Souza, JCS [1 ]
Do Coutto, MB [1 ]
Schilling, MT [1 ]
机构
[1] Univ Fed Fluminense, Dept Elect Engn, BR-24210240 Niteroi, RJ, Brazil
关键词
power system security assessment; contingency selection; pattern recognition; artificial neural networks;
D O I
10.1016/S0378-7796(02)00016-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method for automatic contingency selection and static security evaluation of electrical power systems. The method employs multi-layer perceptron neural networks whose inputs are power flows and injections, while the outputs compute performance indexes associated with post-contingency scenarios. Contingency ranking and selection are performed based on the artificial neural networks responses. Classifications of system operating state with respect to static security are also provided. The performance of the method is evaluated for different operating conditions using the IEEE 24-bus test system. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1979, IEEE T POWER AP SYST, V98, P2047, DOI 10.1109/TPAS.1979.319398
[2]  
DEBS AS, 1988, MODERN POWER SYSTEM
[3]  
DEBS AS, 1975, P ENG F C SYSTEMS EN, P144
[4]  
DILLON TS, 1996, NEURAL NETWORK APPL
[5]  
DOCOUTTO MB, 1999, P 13 POW SYST COMP C, V1, P441
[6]   AUTOMATIC CONTINGENCY SELECTION [J].
EJEBE, GC ;
WOLLENBERG, BF .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1979, 98 (01) :97-109
[7]  
Haykin S., 1994, NEURAL NETWORKS COMP
[8]  
IRISARRI G, 1979, IEEE T POWER APPARAT, V98, P1552
[9]   Fast real power contingency ranking using a counterpropagation network [J].
Lo, KL ;
Peng, LJ ;
Macqueen, JF ;
Ekwue, AO ;
Cheng, DTY .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (04) :1259-1264
[10]   POWER-SYSTEM STATIC SECURITY ASSESSMENT USING THE KOHONEN NEURAL NETWORK CLASSIFIER [J].
NIEBUR, D ;
GERMOND, AJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (02) :865-872