Is Artificial Intelligence Better Than Human Clinicians in Predicting Patient Outcomes?

被引:26
作者
Lee, Joon [1 ,2 ,3 ]
机构
[1] Univ Calgary, Cumming Sch Med, Data Intelligence Hlth Lab, 3280 Hosp Dr NW,TRW 5E17, Calgary, AB T2N 4Z6, Canada
[2] Univ Calgary, Cumming Sch Med, Dept Community Hlth Sci, Calgary, AB, Canada
[3] Univ Calgary, Cumming Sch Med, Dept Cardiac Sci, Calgary, AB, Canada
关键词
patient outcome prediction; artificial intelligence; machine learning; human-generated predictions; human-AI symbiosis; DECISION-MAKING; MACHINE; CARE; CLASSIFICATION; PERFORMANCE; MEDICINE; SURVIVAL; CANCER; RISK;
D O I
10.2196/19918
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning-based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.
引用
收藏
页数:5
相关论文
共 46 条
[1]   Randomized Clinical Trials of Artificial Intelligence [J].
Angus, Derek C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (11) :1043-1045
[2]   The Canadian C-spine rule performs better than unstructured physician judgment [J].
Bandiera, G ;
Stiell, IG ;
Wells, GA ;
Clement, C ;
De Maio, V ;
Vandemheen, KL ;
Greenberg, GH ;
Lesiuk, H ;
Brison, R ;
Cass, D ;
Dreyer, J ;
Eisenhauer, MA ;
MacPhail, L ;
McKnight, RD ;
Morrison, L ;
Reardon, M ;
Schull, M ;
Worthington, J .
ANNALS OF EMERGENCY MEDICINE, 2003, 42 (03) :395-402
[3]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509
[4]   Predicting protein structures with a multiplayer online game [J].
Cooper, Seth ;
Khatib, Firas ;
Treuille, Adrien ;
Barbero, Janos ;
Lee, Jeehyung ;
Beenen, Michael ;
Leaver-Fay, Andrew ;
Baker, David ;
Popovic, Zoran ;
Players, Foldit .
NATURE, 2010, 466 (7307) :756-760
[5]  
Cranor LF, 2008, FRAMEWORK REASONING
[6]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[7]   Prediction models for cardiovascular disease risk in the general population: systematic review [J].
Damen, Johanna A. A. G. ;
Hooft, Lotty ;
Schuit, Ewoud ;
Debray, Thomas P. A. ;
Collins, Gary S. ;
Tzoulaki, Ioanna ;
Lassale, Camille M. ;
Siontis, George C. M. ;
Chiocchia, Virginia ;
Roberts, Corran ;
Schlussel, Michael Maia ;
Gerry, Stephen ;
Black, James A. ;
Heus, Pauline ;
van der Schouw, Yvonne T. ;
Peelen, Linda M. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
[8]   SYSTEMATIC-ERRORS IN MEDICAL DECISION-MAKING - JUDGMENT LIMITATIONS [J].
DAWSON, NV ;
ARKES, HR .
JOURNAL OF GENERAL INTERNAL MEDICINE, 1987, 2 (03) :183-187
[9]   Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach [J].
Desautels, Thomas ;
Calvert, Jacob ;
Hoffman, Jana ;
Jay, Melissa ;
Kerem, Yaniv ;
Shieh, Lisa ;
Shimabukuro, David ;
Chettipally, Uli ;
Feldman, Mitchell D. ;
Barton, Chris ;
Wales, David J. ;
Das, Ritankar .
JMIR MEDICAL INFORMATICS, 2016, 4 (03) :67-81
[10]  
Driggs-Campbell K, 2015, IEEE INT CONF ROBOT, P1654, DOI 10.1109/ICRA.2015.7139410