A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

被引:12
作者
Dong, Zhe [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
关键词
PWR; state-observation; nonlinear observer; multilayer neural network; NUCLEAR-REACTORS; TEMPERATURE CONTROL; DESIGN; SYSTEMS; APPROXIMATION; DISSIPATION; CONTROLLER;
D O I
10.3390/en6105382
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Although there have been some severe nuclear accidents such as Three Mile Island (USA), Chernobyl (Ukraine) and Fukushima (Japan), nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR) is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP) neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR), and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.
引用
收藏
页码:5382 / 5401
页数:20
相关论文
共 34 条
[1]   A stable neural network-based observer with application to flexible-joint manipulators [J].
Abdollahi, F ;
Talebi, HA ;
Patel, RV .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01) :118-129
[2]   Adaptive control of a PWR core power using neural networks [J].
Arab-Alibeik, H ;
Setayeshi, S .
ANNALS OF NUCLEAR ENERGY, 2005, 32 (06) :588-605
[3]   Improved temperature control of a PWR nuclear reactor using an LQG/LTR based controller [J].
Arab-Alibeik, H ;
Setayeshi, S .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (01) :211-218
[4]   LQG LTR ROBUST-CONTROL OF NUCLEAR-REACTORS WITH IMPROVED TEMPERATURE PERFORMANCE [J].
BENABDENNOUR, A ;
EDWARDS, RM ;
LEE, KY .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1992, 39 (06) :2286-2294
[5]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[6]   Nonlinear Adaptive Power-Level Control for Modular High Temperature Gas-Cooled Reactors [J].
Dong, Zhe .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (02) :1332-1345
[7]   Output-feedback load-following control of nuclear reactors based on a dissipative high gain filter [J].
Dong, Zhe ;
Huang, Xiaojin ;
Zhang, Liangju .
NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (12) :4783-4793
[8]   Nonlinear State-Feedback Dissipation Power Level Control for Nuclear Reactors [J].
Dong, Zhe .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (01) :241-257
[9]   Power-Level Control of Nuclear Reactors Based on Feedback Dissipation and Backstepping [J].
Dong, Zhe ;
Feng, Junting ;
Huang, Xiaojin ;
Zhang, Liangju .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (03) :1577-1588
[10]   Dissipation-Based High Gain Filter for Monitoring Nuclear Reactors [J].
Dong, Zhe ;
Feng, Junting ;
Huang, Xiaojin ;
Zhang, Liangju .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (01) :328-339