PEGylated nano-Rehmannia glutinosa polysaccharide induces potent adaptive immunity against Bordetella bronchiseptica

被引:15
作者
Huang, Yee [1 ]
Nan, Li [2 ]
Xiao, Chenwen [1 ]
Su, Fei [1 ]
Li, Ke [1 ]
Ji, Quan-An [1 ]
Wei, Qiang [1 ]
Liu, Yan [1 ]
Bao, Guolian [1 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Anim Husb & Vet Sci, Hangzhou 310021, Peoples R China
[2] Zhejiang Normal Univ, Jinhua 321000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rehmannia glutinosa polysaccharide; PEGylation; Bordetella bronchiseptica; Dendritic cells; Adaptive immunity; IMMUNOLOGICAL ACTIVITY; DELIVERY-SYSTEM; DENDRITIC CELLS; LIPOSOME; ADJUVANT; ANTIGEN; PEG; NANOPARTICLES; VACCINES;
D O I
10.1016/j.ijbiomac.2020.12.044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vaccines, in many cases, stimulate only too weak immunogenicity to prevent infection. Therefore, adjuvants are required during their preparation to boost the immune response. We herein developed a PEGylated nanoadjuvant based on Rehmannia glutinosa polysaccharide (RGP). The addition of PEG layer exhibits enhanced immune performance of the nano-RGP. Stimulation of dendritic cells (DCs) with PEGylated nano-RGP (pRL) led to increased proliferation and cytokine production (IL-6, IL-12, IL-1 beta and TNF-alpha). The pRL was internalized into DCs via a rapid and efficient method. The mice immunized with pRL exhibited enhanced antigen-specific serum IgG and Th1-(IFN-gamma), Th2-(IL-4), and Th17-( IL-17, IL-6) cytokine production, contributing to a good anti-infection performance. Furthermore, the pRL could effectively deliver the antigen to the lymph nodes (LNs), activate DC in the LN and produce enhanced CD4(+) and CD8(+) T-cells-derived memory (CD44(high) CD62L(high)), and effector (CD44(high) CD62L(low)) as well as functional phenotypes. Our results revealed that pRL can act as a promising adjuvant with targeted delivery of antigen due to its effective activation and robust adaptive immunity induction of DCs. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:507 / 517
页数:11
相关论文
共 42 条
  • [1] Surface Modification of Polysaccharide-Based Nanoparticles with PEG and Dextran and the Effects on Immune Cell Binding and Stimulatory Characteristics
    Bamberger, Denise
    Hobernik, Dominika
    Konhaeuser, Matthias
    Bros, Matthias
    Wich, Peter R.
    [J]. MOLECULAR PHARMACEUTICS, 2017, 14 (12) : 4403 - 4416
  • [2] Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells
    Bantug, Glenn R.
    Fischer, Marco
    Grahlert, Jasmin
    Balmer, Maria L.
    Unterstab, Gunhild
    Develioglu, Leyla
    Steiner, Rebekah
    Zhang, Lianjun
    Costa, Ana S. H.
    Gubser, Patrick M.
    Burgener, Anne-Valerie
    Sauder, Ursula
    Loliger, Jordan
    Belle, Reka
    Dimeloe, Sarah
    Lotscher, Jonas
    Jauch, Annaise
    Recher, Mike
    Honger, Gideon
    Hall, Michael N.
    Romero, Pedro
    Frezza, Christian
    Hess, Christoph
    [J]. IMMUNITY, 2018, 48 (03) : 542 - +
  • [3] Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice
    Belhart, Keila
    de la Paz Gutierrez, Maria
    Zacca, Federico
    Ambrosis, Nicolas
    Gestal, Monica Cartelle
    Taylor, Dawn
    Dahlstrom, Kurt M.
    Harvill, Eric T.
    O'Toole, George A.
    Sisti, Federico
    Fernandez, Julieta
    [J]. JOURNAL OF BACTERIOLOGY, 2019, 201 (17)
  • [4] The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo
    Bo, Ruonan
    Zheng, Sisi
    Xing, Jie
    Luo, Li
    Niu, Yale
    Huang, Yee
    Liu, Zhenguang
    Hu, Yuanliang
    Liu, Jiaguo
    Wu, Yi
    Wang, Deyun
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 85 : 294 - 301
  • [5] Conjugation of PEG-hexadecane markedly increases the immunogenicity crossMark of pneumococcal polysaccharide conjugate vaccine
    Chang, Xin
    Yu, Weili
    Ji, Shaoyang
    Shen, Lijuan
    Tan, Aijuan
    Hu, Tao
    [J]. VACCINE, 2017, 35 (13) : 1698 - 1704
  • [6] Modulating the immune system through nanotechnology
    Dacoba, Tamara G.
    Olivera, Ana
    Torres, Dolores
    Crecente-Campo, Jose
    Jose Alonso, Maria
    [J]. SEMINARS IN IMMUNOLOGY, 2017, 34 (0C) : 78 - 102
  • [7] Engineering nanoparticulate vaccines for enhancing antigen cross-presentation
    Du, Guangsheng
    Sun, Xun
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2020, 66 : 113 - 122
  • [8] Effect of polyethylene glycol (PEG) molecular weight and nanofillers on the properties of banana pseudostem nanocellulose films
    Faradilla, R. H. Fitri
    Lee, George
    Sivakumar, Pavallam
    Stenzel, Martina
    Arcot, Jayashree
    [J]. CARBOHYDRATE POLYMERS, 2019, 205 (330-339) : 330 - 339
  • [9] Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor
    Fontana, Flavia
    Fusciello, Manlio
    Groeneveldt, Christianne
    Capasso, Cristian
    Chiaro, Jacopo
    Feola, Sara
    Liu, Zehua
    Makila, Ermei M.
    Salonen, Jarno J.
    Hirvonen, Jouni T.
    Cerullo, Vincenzo
    Santos, Helder A.
    [J]. ACS NANO, 2019, 13 (06) : 6477 - 6490
  • [10] Adjuvants and delivery systems in veterinary vaccinology: current state and future developments
    Heegaard, Peter M. H.
    Dedieu, Laurence
    Johnson, Nicholas
    Le Potier, Marie-Frederique
    Mockey, Michael
    Mutinelli, Franco
    Vahlenkamp, Thomas
    Vascellari, Marta
    Sorensen, Nanna Skall
    [J]. ARCHIVES OF VIROLOGY, 2011, 156 (02) : 183 - 202