GROWTH ESTIMATES FOR MEROMORPHIC SOLUTIONS OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

被引:0
作者
Makhmutov, Shamil [1 ]
Rattya, Jouni [2 ]
Vesikko, Toni [2 ]
机构
[1] Sultan Qaboos Univ, POB 36,Pc 123, Muscat, Oman
[2] Univ Eastern Finland, POB 111, Joensuu 80101, Finland
关键词
Complex differential equations; spherical derivative; normal functions;
D O I
10.2748/tmj.20191118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish pointwise growth estimates for the spherical derivative of solutions of the first order algebraic differential equations. A generalization of this result to higher order equations is also given. We discuss the related question of when for a given class X of meromorphic functions in the unit disc, defined by means of the spherical derivative, and m is an element of N \ {1}, f(m) is an element of X implies f is an element of X. An affirmative answer to this is given for example in the case of UBC, the a-normal functions with alpha >= 1 and certain (sufficiently large) Dirichlet type classes.
引用
收藏
页码:621 / 629
页数:9
相关论文
共 16 条
  • [1] [Anonymous], 2014, MEM AM MATH SOC
  • [2] Weighted Yosida functions
    Aulaskari, R.
    Makhmutov, S.
    Rattya, J.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 167 - 172
  • [3] AULASKARI R., 2001, COMPUT METHODS FUNCT, V1, P99
  • [4] Chen HH, 1998, J AUST MATH SOC A, V64, P231
  • [5] Chen HH, 1996, ANN ACAD SCI FENN-M, V21, P89
  • [6] ON NON-NORMAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS
    Grohn, Janne
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 1209 - 1220
  • [7] CRITERION FOR A MEROMORPHIC FUNCTION TO BE NORMAL
    LAPPAN, P
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1974, 49 (04) : 492 - 495
  • [8] Lappan P., 1977, ANN ACAD SCI FENN-M, V3, P301
  • [9] A Malmquist-Yosida type of theorem for the second-order algebraic differential equations
    Liao, LW
    Su, WY
    Yang, CC
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (01) : 63 - 71
  • [10] LOHWATER A. J., 1973, ANN ACAD SCI FENN A