Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects

被引:1
作者
Rojac, Tadej [1 ]
Bencan, Andreja [1 ]
Drazic, Goran [2 ]
Sakamoto, Naonori [3 ]
Ursic, Hana [1 ]
Jancar, Bostjan [4 ]
Tavcar, Gasper [5 ]
Makarovic, Maja [1 ,6 ]
Walker, Julian [1 ]
Malic, Barbara [1 ]
Damjanovic, Dragan [7 ]
机构
[1] Jozef Stefan Inst, Elect Ceram Dept, Ljubljana 1000, Slovenia
[2] Natl Inst Chem, Dept Chem Mat, Ljubljana 1000, Slovenia
[3] Shizuoka Univ, Elect Res Inst, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
[4] Jozef Stefan Inst, Adv Mat Dept, Ljubljana 1000, Slovenia
[5] Jozef Stefan Inst, Dept Inorgan Chem & Technol, Ljubljana 1000, Slovenia
[6] Jozef Stefan Int Postgrad Sch, Ljubljana 1000, Slovenia
[7] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Lab Ferroelectr & Funct Oxides, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1038/NMAT4799
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.
引用
收藏
页码:322 / +
页数:7
相关论文
共 50 条
  • [31] DOMAIN-WALL WIDTH IN FERROELECTRIC MATERIALS
    MISHRA, RK
    THOMAS, G
    AMERICAN CERAMIC SOCIETY BULLETIN, 1983, 62 (08): : 863 - 863
  • [32] Domain-wall nanoelectronics in ferroelectric memory
    Jinxing Zhang
    Science China Materials, 2018, 61 (05) : 767 - 768
  • [33] Ferroelectric domain-wall logic units
    Jing Wang
    Jing Ma
    Houbing Huang
    Ji Ma
    Hasnain Mehdi Jafri
    Yuanyuan Fan
    Huayu Yang
    Yue Wang
    Mingfeng Chen
    Di Liu
    Jinxing Zhang
    Yuan-Hua Lin
    Long-Qing Chen
    Di Yi
    Ce-Wen Nan
    Nature Communications, 13
  • [34] Photovoltaic response around a unique 180° ferroelectric domain wall in single-crystalline BiFeO3
    Blouzon, C.
    Chauleau, J-Y.
    Mougin, A.
    Fusil, S.
    Viret, M.
    PHYSICAL REVIEW B, 2016, 94 (09)
  • [35] Domain-wall nanoelectronics in ferroelectric memory
    Zhang, Jinxing
    SCIENCE CHINA-MATERIALS, 2018, 61 (05) : 767 - 768
  • [36] Domain-wall nanoelectronics in ferroelectric memory
    Jinxing Zhang
    Science China Materials, 2018, 61 : 767 - 768
  • [37] Domain Wall Conductivity in La-Doped BiFeO3
    Seidel, J.
    Maksymovych, P.
    Batra, Y.
    Katan, A.
    Yang, S. -Y.
    He, Q.
    Baddorf, A. P.
    Kalinin, S. V.
    Yang, C. -H.
    Yang, J. -C.
    Chu, Y. -H.
    Salje, E. K. H.
    Wormeester, H.
    Salmeron, M.
    Ramesh, R.
    PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [38] A diode for ferroelectric domain-wall motion
    J.R. Whyte
    J.M. Gregg
    Nature Communications, 6
  • [39] Influence of oxygen vacancies on the domain wall stability in BiFeO3
    Zhang, Mao-Hua
    Tan, Yueze
    Yang, Tiannan
    Chen, Long-Qing
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) : 7751 - 7757
  • [40] Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films
    Chen, Y. B.
    Katz, M. B.
    Pan, X. Q.
    Das, R. R.
    Kim, D. M.
    Baek, S. H.
    Eom, C. B.
    APPLIED PHYSICS LETTERS, 2007, 90 (07)