Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: Functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip

被引:36
作者
Agostini, M. [1 ,2 ,3 ]
Amato, F. [1 ,2 ]
Vieri, M. L. [1 ,2 ]
Greco, G. [1 ,2 ]
Tonazzini, I. [1 ,2 ]
Baroncelli, L. [4 ,5 ]
Caleo, M. [4 ,6 ]
Vannini, E. [4 ]
Santi, M. [1 ,2 ]
Signore, G. [1 ,2 ,7 ]
Cecchini, M. [1 ,2 ,3 ]
机构
[1] Ist Nanosci CNR, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, Piazza San Silvestro 12, I-56127 Pisa, Italy
[3] INTA Srl, Intelligent Acoust Syst, Via Nino Pisano 14, I-56122 Pisa, Italy
[4] Natl Res Council CNR, Inst Neurosci, Via G Moruzzi 1, I-56124 Pisa, Italy
[5] IRCCS Stella Maris Fdn, Dept Dev Neurosci, Viale Tirreno 331, I-56128 Pisa, Italy
[6] Univ Padua, Dept Biomed Sci, Via G Colombo 3, I-35121 Padua, Italy
[7] Fdn Pisana Sci, Via Ferruccio Giovannini 13, I-56017 Pisa, Italy
关键词
Biosensor; Lab-on-chip; Quartz crystal microbalance (QCM); Surface acoustic wave (SAW); Glial fibrillary acidic protein (GFAP); Brain damage; Point of care; TRAUMATIC BRAIN-INJURY; DIAGNOSTIC MARKER; ACOUSTOFLUIDICS; MANIPULATION;
D O I
10.1016/j.bios.2020.112774
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Glial-fibrillary-acidic-protein (GFAP) has recently drawn significant attention from the clinical environment as a promising biomarker. The pathologies which can be linked to the presence of GFAP in blood severely affect the human central nervous system. These pathologies are glioblastoma multiforme (GBM), traumatic brain injuries (TBIs), multiple sclerosis (MS), intracerebral hemorrhage (ICH), and neuromyelitis optica (NMO). Here, we develop three different detection strategies for GFAP, among the most popular in the biosensing field and never examined side by side within the experimental frame. We compare their capability of detecting GFAP in a clean buffer and serum-matrix by using gold-coated quartz-crystal-microbalance (QCM) sensors. All the three detection strategies are based on antibodies, and each of them focuses on a key aspect of the biosensing process. The first is based on a polyethylene glycol (PEG) chain for antifouling, the second on a protein-G linker for controlling antibody-orientation, and the third on antibody-splitting and direct surface immobilization for high-surface coverage. Then, we select the best-performing protocol and validate its detection performance with an ultrahigh-frequency (UHF) surface-acoustic-wave (SAW) based lab-on-chip (LoC). GFAP successful detection is demonstrated in a clean-buffer and serum-matrix at a concentration of 35 pM. This GFAP level is compatible with clinical diagnostics. This result suggests the use of our technology for the realization of a point-of-care biosensing platform for the detection of multiple brain-pathology biomarkers.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Serum GFAP as a biomarker for disease severity in multiple sclerosis [J].
Abdelhak, A. ;
Huss, A. ;
Kassubek, J. ;
Tumani, H. ;
Otto, M. .
SCIENTIFIC REPORTS, 2018, 8
[2]   Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing [J].
Agostini, Matted ;
Greco, Gina ;
Cecchini, Marco .
IEEE ACCESS, 2019, 7 :70901-70909
[3]   Polydimethylsiloxane (PDMS) irreversible bonding to untreated plastics and metals for microfluidics applications [J].
Agostini, Matteo ;
Greco, Gina ;
Cecchini, Marco .
APL MATERIALS, 2019, 7 (08)
[4]   A Rayleigh surface acoustic wave (R-SAW) resonator biosensor based on positive and negative reflectors with sub-nanomolar limit of detection [J].
Agostini, Matteo ;
Greco, Gina ;
Cecchini, Marco .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 254 :1-7
[5]   Effects of the Electrode Size and Modification Protocol on a Label-Free Electrochemical Biosensor [J].
Arya, Sunil K. ;
Pui, Tze Sian ;
Wong, Chee Chung ;
Kumar, Sai ;
Rahman, Abdur Rub Abdur .
LANGMUIR, 2013, 29 (22) :6770-6777
[6]   Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis [J].
Axelsson, M. ;
Malmestrom, C. ;
Nilsson, S. ;
Haghighi, S. ;
Rosengren, L. ;
Lycke, J. .
JOURNAL OF NEUROLOGY, 2011, 258 (05) :882-888
[7]   Acoustic-counterflow microfluidics by surface acoustic waves [J].
Cecchini, Marco ;
Girardo, Salvatore ;
Pisignano, Dario ;
Cingolani, Roberto ;
Beltram, Fabio .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[8]   A surface-acoustic-wave-based cantilever bio-sensor [J].
De Simoni, Giorgio ;
Signore, Giovanni ;
Agostini, Matteo ;
Beltram, Fabio ;
Piazza, Vincenzo .
BIOSENSORS & BIOELECTRONICS, 2015, 68 :570-576
[9]   Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves [J].
Destgeer, Ghulam ;
Sung, Hyung Jin .
LAB ON A CHIP, 2015, 15 (13) :2722-2738
[10]   Reusable gold nanoparticle enhanced QCM immunosensor for detecting C-reactive protein [J].
Ding, Pengfei ;
Liu, Ruxiu ;
Liu, Shihui ;
Mao, Xueyin ;
Hu, Ruifen ;
Li, Guang .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 188 :1277-1283