Among gastrointestinal distributed isozymes encoded at the UGT1 locus, UDP-glucuronosyltransferase 1A10 (UGT1A10) metabolizes a number of important chemicals. Similar to broad conversion of phytoestrogens (Basu, N. K., Ciotti, M., Hwang, M. S., Kole, L., Mitra, P. S., Cho, J. W., and Owens, I. S. ( 2004) J. Biol. Chem. 279, 1429-1441), UGT1A10 metabolized estrogens and their derivatives, whereas UGT1A1, -1A3, -1A7, and -1A8 differentially exhibited reduced activity toward the same. UGT1A10 compared with UGT1A7, -1A8, and -1A3 generally exhibited high activity toward acidic nonsteroidal anti-inflammatory drugs and natural benzaldehyde derivatives, while UGT1A3 metabolized most efficiently aromatic transcinnamic acids known to be generated from flavonoid glycosides by microflora in the lower gastrointestinal tract. Finally UGT1A10, -1A7, -1A8, and -1A3 converted plant-based salicylic acids; methylsalicylic acid was transformed at high levels, and acetylsalicylic (aspirin) and salicylic acid were transformed at moderate to low levels. Atypically UGT1A10 transformed estrogens between pH 6 and 8 but acidic structures preferentially at pH 6.4. Furthermore evidence indicates UGT1A10 expressed in COS-1 cells depends upon phosphorylation; UGT1A10 versus its single, double, and triple mutants at three predicted protein kinase C phosphorylation sites incorporated [P-33]-orthophosphate and showed a progressive decrease with no detectable label or activity for the triple T73A/T202A/S432G-1A10 mutant. Single and double mutants revealed either null/full activity or null/additive activity, respectively. Additionally UGT1A10-expressing cultures glucuronidated 17beta-[C-14]estradiol, whereas cultures containing null mutants at protein kinase C sites showed no estrogen conversion. Importantly UGT1A10 in cells supported 10-fold higher glucuronidation of 17beta-estradiol than UGT1A1. In summary, our results suggest gastrointestinally distributed UGT1A10 is important for detoxifying estrogens/phytoestrogens and aromatic acids with complementary activity by UGT1A7, -1A8, -1A3, and/or -1A1 evidently dependent upon phosphorylation.