Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism

被引:124
作者
Picconi, B
Gardoni, F
Centonze, D
Mauceri, D
Cenci, MA
Bernardi, G
Calabresi, P
Di Luca, M
机构
[1] Univ Roma Tor Vergata, Dipartimento Neurosci, Neurol Clin, I-00133 Rome, Italy
[2] Ist Ric & Cura Carattere Sci, Fdn Santa Lucia, I-00179 Rome, Italy
[3] Univ Milan, Ctr Excellence Neurodegenerat Dis, I-20133 Milan, Italy
[4] Univ Milan, Dept Pharmacol Sci, I-20133 Milan, Italy
[5] Lund Univ, Wallenberg Neurosci Ctr, Div Neurobiol, S-22184 Lund, Sweden
关键词
6-OHDA; Parkinson's disease; CaMKII; LTP; rat; striatum;
D O I
10.1523/JNEUROSCI.1224-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The NMDA receptor complex represents a key molecular element in the pathogenesis of long-term synaptic changes and motor abnormalities in Parkinson's disease (PD). Here we show that NMDA receptor 1 (NR1) subunit and postsynaptic density (PSD)-95 protein levels are selectively reduced in the PSD of dopamine (DA)-denervated striata. These effects are accompanied by an increase in striatal levels of alphaCa(2+)-calmodulin-dependent protein kinase II (alphaCaMKII) autophosphorylation, along with a higher recruitment of activated alphaCaMKII to the regulatory NMDA receptor NR2A-NR2B subunits. Acute treatment of striatal slices with R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride, but not with L-sulpiride, mimicked the effect of DA denervation on both alphaCaMKII autophosphorylation and corticostriatal synaptic plasticity. In addition to normalizing alphaCaMKII autophosphorylation levels as well as assembly and anchoring of the kinase to the NMDA receptor complex, intrastriatal administration of the CaMKII inhibitors KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl] methylamino] methyl] phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) and antennapedia autocamtide-related inhibitory peptide II is able to reverse both the alterations in corticostriatal synaptic plasticity and the deficits in spontaneous motor behavior that are found in an animal model of PD. The same beneficial effects are produced by a regimen of L-3,4-dihydroxyphenylalanine(L-DOPA) treatment, which is able to normalize alphaCaMKII autophosphorylation. These data indicate that abnormal alphaCaMKII autophosphorylation plays a causal role in the alterations of striatal plasticity and motor behavior that follow DA denervation. Normalization of CaMKII activity may be an important underlying mechanism of the therapeutic action of L-DOPA in PD.
引用
收藏
页码:5283 / 5291
页数:9
相关论文
共 43 条
[1]   Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP [J].
Bortolotto, ZA ;
Collingridge, GL .
NEUROPHARMACOLOGY, 1998, 37 (4-5) :535-544
[2]   LIMBIC EPILEPSY IN TRANSGENIC MICE CARRYING A CA2+/CALMODULIN-DEPENDENT KINASE-II ALPHA-SUBUNIT MUTATION [J].
BUTLER, LS ;
SILVA, AJ ;
ABELIOVICH, A ;
WATANABE, Y ;
TONEGAWA, S ;
MCNAMARA, JO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :6852-6855
[3]  
CALABRESI P, 1993, BRAIN, V116, P433
[4]   LONG-TERM POTENTIATION IN THE STRIATUM IS UNMASKED BY REMOVING THE VOLTAGE-DEPENDENT MAGNESIUM BLOCK OF NMDA RECEPTOR CHANNELS [J].
CALABRESI, P ;
PISANI, A ;
MERCURI, NB ;
BERNARDI, G .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1992, 4 (10) :929-935
[5]  
Calabresi P, 1997, J NEUROSCI, V17, P4536
[6]   Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity [J].
Calabresi, P ;
Gubellini, P ;
Centonze, D ;
Picconi, B ;
Bernardi, G ;
Chergui, K ;
Svenningsson, P ;
Fienberg, AA ;
Greengard, P .
JOURNAL OF NEUROSCIENCE, 2000, 20 (22) :8443-8451
[7]   The corticostriatal projection: From synaptic plasticity to dysfunctions of the basal ganglia [J].
Calabresi, P ;
Pisani, A ;
Mercuri, NB ;
Bernardi, G .
TRENDS IN NEUROSCIENCES, 1996, 19 (01) :19-24
[8]   Electrophysiology of dopamine in normal and denervated striatal neurons [J].
Calabresi, P ;
Centonze, D ;
Bernardi, G .
TRENDS IN NEUROSCIENCES, 2000, 23 (10) :S57-S63
[9]   L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA [J].
Cenci, MA ;
Lee, CS ;
Björklund, A .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (08) :2694-2706
[10]   Unilateral dopamine denervation blocks corticostriatal LTP [J].
Centonze, D ;
Gubellini, P ;
Picconi, B ;
Calabresi, P ;
Giacomini, P ;
Bernardi, G .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (06) :3575-3579