Perturbative calculation of the scaled factorial moments in the second-order quark-hadron phase transition within the Ginzburg-Landau description

被引:3
作者
Yang, CB [1 ]
Cai, X
机构
[1] Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW C | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevC.61.014902
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The scaled factorial moments F-q(-) are studied for a second-order quark-hadron phase transition within the Ginzbug-Landau description. The role played by the ground state of the system under low temperature is emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a perturbative calculation for F-q can be carried out. Power scaling between F-q's is shown, and a universal scaling exponent nu similar or equal to 1.75 is given for the case with weak correlations and weak self-interactions.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers [J].
Ambrose, T ;
Chien, CL .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1743-1746
[2]   INTERMITTENCY IN THE GINZBURG-LANDAU MODEL FOR FIRST-ORDER PHASE-TRANSITIONS [J].
BABICHEV, LF ;
KLENITSKY, DV ;
KUVSHINOV, VI .
PHYSICS LETTERS B, 1995, 345 (03) :269-271
[3]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[4]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[5]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[6]   Analytical study of factorial moments for first- and second-order phase transitions [J].
Cai, X ;
Yang, CB ;
Zhou, ZM .
PHYSICAL REVIEW C, 1996, 54 (05) :2775-2778
[7]  
Cao Z, 1996, Z PHYS C PART FIELDS, V72, P661, DOI 10.1007/s002880050290
[8]   Order-parameter distribution function of finite O(n) symmetric systems [J].
Chen, XS ;
Dohm, V ;
Schultka, N .
PHYSICAL REVIEW LETTERS, 1996, 77 (17) :3641-3644
[9]   DIAGRAMMATIC PERTURBATION APPROACH TO FINITE-SIZE AND SURFACE CRITICAL-BEHAVIOR FOR DIRICHLET BOUNDARY-CONDITIONS [J].
DOHM, V .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (01) :109-118
[10]   HELMHOLTZ FREE-ENERGY OF FINITE SPIN SYSTEMS NEAR CRITICALITY [J].
EISENRIEGLER, E ;
TOMASCHITZ, R .
PHYSICAL REVIEW B, 1987, 35 (10) :4876-4887