Uniformly Convergent Second Order Numerical Method for a Class of Parameterized Singular Perturbation Problems

被引:2
作者
Shakti, D. [1 ]
Mohapatra, J. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, India
关键词
Parameterized problem; Boundary layer; Richardson extrapolation; Singular perturbation; DIFFERENTIAL-DIFFERENCE EQUATIONS; SMALL SHIFTS; EXTRAPOLATION;
D O I
10.1007/s12591-017-0361-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a class of nonlinear singularly perturbed boundary value problems depending on a parameter are considered. To solve this class of problems; first we apply the backward Euler finite difference scheme on Shishkin type meshes [standard Shishkin mesh (S-mesh), Bakhvalov-Shishkin mesh (B-S-mesh)]. The convergence analysis is carried out and the method is shown to be convergent with respect to the small parameter and is of almost first order accurate on S-mesh and first order accurate on B-S-mesh. Then, to improve the accuracy of the computed solution from almost first order to almost second order on S-mesh and from first order to second order on B-S-mesh, the post-processing method namely, the Richardson extrapolation technique is applied. The proof for the uniform convergence of the proposed method is carried out on both the meshes. Numerical experiments indicate the high accuracy of the proposed method.
引用
收藏
页码:1033 / 1043
页数:11
相关论文
共 19 条
[1]   Uniform difference method for a parameterized singular perturbation problem [J].
Amiraliyev, G. M. ;
Kudu, Mustafa ;
Duru, Hakki .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :89-100
[2]   A note on a parameterized singular perturbation problem [J].
Amiraliyev, GM ;
Duru, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) :233-242
[3]   Uniform difference method for parameterized singularly perturbed delay differential equations [J].
Amiraliyeva, I. G. ;
Amiraliyev, G. M. .
NUMERICAL ALGORITHMS, 2009, 52 (04) :509-521
[4]   A second-order difference scheme for a parameterized singular perturbation problem [J].
Cen, Zhongdi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) :174-182
[5]  
Farrell P, 2000, Robust computational techniques for boundary layers, DOI 10.1201/9781482285727
[6]  
Jankowski T., 1997, J APPL MATH STOCH AN, V10, P273
[7]   Numerical treatment for singularly perturbed nonlinear differential difference equations with negative shift [J].
Kadalbajoo, M. K. ;
Sharma, K. K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E1909-E1924
[8]  
Kadalbajoo MK, 2006, J COMPUT METHODS SCI, V6, P39
[9]   Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type [J].
Kadalbajoo, MK ;
Sharma, KK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (01) :145-163
[10]  
Liu X., 2001, J APPL MATH STOCH AN, V14, P183, DOI [10.1155/s1048953301000132, DOI 10.1155/S1048953301000132]