Periodic Homogenization of Green and Neumann Functions

被引:90
作者
Kenig, Carlos E. [1 ]
Lin, Fanghua [2 ]
Shen, Zhongwei [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
BOUNDARY-VALUE-PROBLEMS; DIRICHLET PROBLEM; COMPACTNESS METHODS; LIPSCHITZ; EQUATION;
D O I
10.1002/cpa.21482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a family of second-order elliptic operators with rapidly oscillating periodic coefficients, we study the asymptotic behavior of the Green and Neumann functions, using Dirichlet and Neumann correctors. As a result we obtain asymptotic expansions of Poisson kernels and the Dirichlet-to-Neumann maps as well as optimal convergence rates in L-p and W-1,W-p for solutions with Dirichlet or Neumann boundary conditions. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:1219 / 1262
页数:44
相关论文
共 27 条
[1]  
Allaire G., 1999, ESAIM: Control, Optimisation and Calculus of Variations, V4, P209, DOI 10.1051/cocv:1999110
[2]   LP BOUNDS ON SINGULAR-INTEGRALS IN HOMOGENIZATION [J].
AVELLANEDA, M ;
FANG, HL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :897-910
[3]   COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION-II - EQUATIONS IN NON-DIVERGENCE FORM [J].
AVELLANEDA, M ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (02) :139-172
[4]  
AVELLANEDA M, 1989, J MATH PURE APPL, V68, P1
[5]   COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION [J].
AVELLANEDA, M ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) :803-847
[6]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[7]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[8]   POISSON SEMIGROUPS AND SINGULAR-INTEGRALS [J].
DAHLBERG, BEJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (01) :41-48
[9]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[10]   WEIGHTED NORM INEQUALITIES FOR THE LUSIN AREA INTEGRAL AND THE NONTANGENTIAL MAXIMAL FUNCTIONS FOR FUNCTIONS HARMONIC IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1980, 67 (03) :297-314