Artificial Neural Networks and Data Mining Techniques for Summer Crop Discrimination: A New Approach

被引:6
作者
Cechim Junior, Clovis [1 ]
Shemmer, Rosangela Canine [1 ]
Johann, Jerry Adriani [1 ]
de Almeida Pereira, Gabriel Henrique [2 ]
Deppe, Flavio [2 ]
Uribe Opazoa, Miguel Angel [1 ]
da Silva Junior, Carlos Antonio [3 ]
机构
[1] State Univ West Parana UNIOESTE, Agr Engn Dept, Cascavel, Brazil
[2] Meteorol Syst Parana SIMEPAR, Curitiba, Parana, Brazil
[3] State Univ Mato Grosso UNEMAT, Dept Geog, Sinop, Brazil
关键词
PRINCIPAL COMPONENT ANALYSIS; TIME-SERIES; VEGETATION INDEXES; CLASSIFICATION; PARANA; STATE; IMAGES; BRAZIL; AREAS; YIELD;
D O I
10.1080/07038992.2019.1594734
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The objective of this research was to distinguish and estimate cultivated areas of soybean and corn in Parana State, Brazil, in the 2014/2015 crop season. The main obstacle in mapping summer crops using vegetation index images is to separate the cultivated areas with soybean and corn. These crops planted in a similar period present similar spectral signatures. Thus, with the use of Data Mining techniques (DM) and Artificial Neural Network (ANN) it was possible to carry out the crop mapping, even for those that present similarities in spectral-temporal profile of vegetation indexes. The accuracy obtained in the mappings resulted in a KI (Kappa Index) of 0.78 and 89% of OA (overall accuracy) indicating a high accuracy in the separation of soybean and corn summer crops.
引用
收藏
页码:16 / 25
页数:10
相关论文
共 48 条
[1]   Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary [J].
Abade, Natanael Antunes ;
de Carvalho Junior, Osmar Ablio ;
Guimaraes, Renato Fontes ;
de Oliveira, Sandro Nunes .
REMOTE SENSING, 2015, 7 (09) :12160-12191
[2]  
[Anonymous], INT J ENG COMPUTER S
[3]  
Antunes J.F.G., 2015, 17 S BRAS SENS REM J, P3237
[4]  
Barbetta PA, 2007, ESTATISTICA APLICADA
[5]  
Becker WR, 2017, ENG AGR-JABOTICABAL, V37, P750, DOI [10.1590/1809-4430-eng.agric.v37n4p750-759/2017, 10.1590/1809-4430-Eng.Agric.v37n4p750-759/2017]
[6]   NEURAL NETWORK APPROACHES VERSUS STATISTICAL-METHODS IN CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA [J].
BENEDIKTSSON, JA ;
SWAIN, PH ;
ERSOY, OK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04) :540-552
[7]  
Bouckaert R. R., 2010, WEKA MANUAL VERSION, V327
[8]  
Caviglione J.H., 2000, Cartas climaticas do Parana
[9]  
Conab-Companhia Nacional de Abastecimento, 2016, GEOSAGRAS
[10]  
Coutinho A.C., 2012, S GEOT PANT EMBR INF, P364