Book drawings of complete bipartite graphs

被引:3
作者
de Klerk, Etienne [1 ]
Pasechnik, Dmitrii V. [2 ]
Salazar, Gelasio [3 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78000, Slp, Mexico
关键词
2-page crossing number; Book crossing number; Complete bipartite graphs; Zarankiewicz conjecture; IMPROVED LOWER BOUNDS; CROSSING NUMBERS; PAGENUMBER;
D O I
10.1016/j.dam.2013.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We recall that a book with k pages consists of a straight line (the spine) and k half-planes (the pages), such that the boundary of each page is the spine. If a graph is drawn on a book with k pages in such a way that the vertices lie on the spine, and each edge is contained in a page, the result is a k-page book drawing (or simply a k-page drawing). The page number of a graph G is the minimum k such that G admits a k-page embedding (that is, a k-page drawing with no edge crossings). The k-page crossing number v(k)(G) of G is the minimum number of crossings in a k-page drawing of G. We investigate the page numbers and k-page crossing numbers of complete bipartite graphs. We find the exact page numbers of several complete bipartite graphs, and use these page numbers to find the exact k-page crossing number of Kk+1,(n) for k is an element of {3, 4, 5, 6}. We also prove the general asymptotic estimate lim(k ->infinity) lim(n ->infinity) v(k)(K-k+1,K-n)/(2n(2)/k(2)) = 1. Finally, we give general upper bounds for v(k)(K-m,K-n), and relate these bounds to the k-planar crossing numbers of K-m,K-n and K-n. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 93
页数:14
相关论文
共 50 条
[41]   VERTEX-DISTINGUISHING IE-TOTAL COLORINGS OF COMPLETE BIPARTITE GRAPHS Km,n(m < n) [J].
Chen, Xiang'en ;
Gao, Yuping ;
Yao, Bing .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) :289-306
[42]   Weak saturation number of a complete bipartite graph * [J].
Xu, Tongtong ;
Wu, Baoyindureng .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 455
[43]   THE BOOK THICKNESS OF NILPOTENT GRAPHS [J].
Kalaimurugan, G. ;
Vignesh, P. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) :127-132
[44]   BOOK EMBEDDINGS OF REGULAR GRAPHS [J].
Balogh, Jozsef ;
Salazar, Gelasio .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (02) :811-822
[45]   On the page number of complete odd-partite graphs [J].
Sperfeld, Konrad .
DISCRETE MATHEMATICS, 2013, 313 (17) :1689-1696
[46]   Decompositions of line graphs of complete graphs into paths and cycles [J].
Ganesamurthy, S. .
DISCRETE MATHEMATICS, 2023, 346 (01)
[47]   Balanced bipartite graphs may be completely star-factored [J].
Martin, N .
JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (06) :407-415
[48]   BOOK EMBEDDING OF GRAPHS ON THE PROJECTIVE PLANE [J].
Ozeki, Kenta ;
Nakamoto, Atsuhiro ;
Nozawa, Takayuki .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) :1801-1836
[49]   NONVANISHING OF BETTI NUMBERS OF EDGE IDEALS AND COMPLETE BIPARTITE SUBGRAPHS [J].
Kimura, Kyouko .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) :710-730
[50]   ON BOOK CROSSING NUMBERS OF THE COMPLETE GRAPH [J].
Abrego, Bernardo ;
Kinzel, Julia ;
Fernandez-Merchant, Silvia ;
Lagoda, Evgeniya ;
Sapozhnikov, Yakov .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) :1686-1700