Book drawings of complete bipartite graphs

被引:3
作者
de Klerk, Etienne [1 ]
Pasechnik, Dmitrii V. [2 ]
Salazar, Gelasio [3 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78000, Slp, Mexico
关键词
2-page crossing number; Book crossing number; Complete bipartite graphs; Zarankiewicz conjecture; IMPROVED LOWER BOUNDS; CROSSING NUMBERS; PAGENUMBER;
D O I
10.1016/j.dam.2013.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We recall that a book with k pages consists of a straight line (the spine) and k half-planes (the pages), such that the boundary of each page is the spine. If a graph is drawn on a book with k pages in such a way that the vertices lie on the spine, and each edge is contained in a page, the result is a k-page book drawing (or simply a k-page drawing). The page number of a graph G is the minimum k such that G admits a k-page embedding (that is, a k-page drawing with no edge crossings). The k-page crossing number v(k)(G) of G is the minimum number of crossings in a k-page drawing of G. We investigate the page numbers and k-page crossing numbers of complete bipartite graphs. We find the exact page numbers of several complete bipartite graphs, and use these page numbers to find the exact k-page crossing number of Kk+1,(n) for k is an element of {3, 4, 5, 6}. We also prove the general asymptotic estimate lim(k ->infinity) lim(n ->infinity) v(k)(K-k+1,K-n)/(2n(2)/k(2)) = 1. Finally, we give general upper bounds for v(k)(K-m,K-n), and relate these bounds to the k-planar crossing numbers of K-m,K-n and K-n. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 93
页数:14
相关论文
共 50 条
[21]   Strong Geodetic Number of Complete Bipartite Graphs and of Graphs with Specified Diameter [J].
Vesna Iršič .
Graphs and Combinatorics, 2018, 34 :443-456
[22]   MULTI-DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS AND COMPLETE GRAPHS INTO BANNERS AND STARS OF SIZE FIVE [J].
Jothimani, V. ;
Hemalatha, P. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (07) :1753-1761
[23]   Note on Path-Connectivity of Complete Bipartite Graphs [J].
Gao, Xiaoxue ;
Li, Shasha ;
Zhao, Yan .
JOURNAL OF INTERCONNECTION NETWORKS, 2022, 22 (01)
[24]   Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs [J].
Lortz R. ;
Mengersen I. .
Results in Mathematics, 2002, 41 (1-2) :140-149
[25]   On acyclic edge-coloring of complete bipartite graphs [J].
Venkateswarlu, Ayineedi ;
Sarkar, Santanu ;
Ananthanarayanan, Sai Mali .
DISCRETE MATHEMATICS, 2017, 340 (03) :481-493
[26]   Weak saturation numbers of complete bipartite graphs in the clique [J].
Kronenberg, Gal ;
Martins, Taisa ;
Morrison, Natasha .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
[27]   Generalized Turán Problems for Complete Bipartite Graphs [J].
Dániel Gerbner ;
Balázs Patkós .
Graphs and Combinatorics, 2022, 38
[28]   A note on acyclic edge coloring of complete bipartite graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
DISCRETE MATHEMATICS, 2009, 309 (13) :4646-4648
[29]   IMPROVED LOWER BOUNDS ON BOOK CROSSING NUMBERS OF COMPLETE GRAPHS [J].
de Klerk, E. ;
Pasechnik, D. V. ;
Salazar, G. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :619-633
[30]   Quasi-Stationary Distributions for the Voter Model on Complete Bipartite Graphs [J].
Ben-Ari, Iddo ;
Panzo, Hugo ;
Speegle, Philip ;
VandenBerg, R. Oliver .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01) :421-437