Book drawings of complete bipartite graphs

被引:3
作者
de Klerk, Etienne [1 ]
Pasechnik, Dmitrii V. [2 ]
Salazar, Gelasio [3 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78000, Slp, Mexico
关键词
2-page crossing number; Book crossing number; Complete bipartite graphs; Zarankiewicz conjecture; IMPROVED LOWER BOUNDS; CROSSING NUMBERS; PAGENUMBER;
D O I
10.1016/j.dam.2013.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We recall that a book with k pages consists of a straight line (the spine) and k half-planes (the pages), such that the boundary of each page is the spine. If a graph is drawn on a book with k pages in such a way that the vertices lie on the spine, and each edge is contained in a page, the result is a k-page book drawing (or simply a k-page drawing). The page number of a graph G is the minimum k such that G admits a k-page embedding (that is, a k-page drawing with no edge crossings). The k-page crossing number v(k)(G) of G is the minimum number of crossings in a k-page drawing of G. We investigate the page numbers and k-page crossing numbers of complete bipartite graphs. We find the exact page numbers of several complete bipartite graphs, and use these page numbers to find the exact k-page crossing number of Kk+1,(n) for k is an element of {3, 4, 5, 6}. We also prove the general asymptotic estimate lim(k ->infinity) lim(n ->infinity) v(k)(K-k+1,K-n)/(2n(2)/k(2)) = 1. Finally, we give general upper bounds for v(k)(K-m,K-n), and relate these bounds to the k-planar crossing numbers of K-m,K-n and K-n. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 93
页数:14
相关论文
共 25 条
[1]  
Beineke L. W., 1967, SEM GRAPH THEOR, P42
[2]   Solving large-scale sparse semidefinite programs for combinatorial optimization [J].
Benson, SJ ;
Ye, YY ;
Zhang, X .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) :443-461
[3]   BOOK THICKNESS OF A GRAPH [J].
BERNHART, F ;
KAINEN, PC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) :320-331
[4]  
Buchheim C, 2006, LECT NOTES COMPUT SC, V4112, P507
[5]   EMBEDDING GRAPHS IN BOOKS - A LAYOUT PROBLEM WITH APPLICATIONS TO VLSI DESIGN [J].
CHUNG, FRK ;
LEIGHTON, FT ;
ROSENBERG, AL .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (01) :33-58
[6]  
Czabarka É, 2006, BOLYAI MATH STUD, P57
[7]   Biplanar Crossing Numbers. II. Comparing Crossing Numbers and Biplanar Crossing Numbers Using the Probabilistic Method [J].
Czabarka, Eva ;
Sykora, Ondrej ;
Szekely, Laszlo A. ;
Vrto, Imrich .
RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (04) :480-496
[8]   IMPROVED LOWER BOUNDS ON BOOK CROSSING NUMBERS OF COMPLETE GRAPHS [J].
de Klerk, E. ;
Pasechnik, D. V. ;
Salazar, G. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :619-633
[9]   IMPROVED LOWER BOUNDS FOR THE 2-PAGE CROSSING NUMBERS OF Km,n AND Kn VIA SEMIDEFINITE PROGRAMMING [J].
de Klerk, E. ;
Pasechnik, D. V. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) :581-595
[10]  
de Klerk E, 2007, MATH PROGRAM, V109, P613, DOI 10.1007/s10107-006-0039-7