Automatic Fuzzy Membership Function Tuning Using the Particle Swarm Optimisation

被引:0
作者
Fang, Gu [1 ]
Kwok, Ngai Ming [2 ]
Ha, Quang [2 ]
机构
[1] Univ Western Sydney, Sch Engn, Penrith, NSW 1797, Australia
[2] Univ Technol Sydney, Fac Engn, Sydney, NSW 2007, Australia
来源
PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS | 2008年
关键词
CONTROLLER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy logic controllers (FLCs) are developed to exploit human expert knowledge in designing control systems. While the fuzzy rules are relatively easy to obtain, fuzzy membership function (MF) tuning could be a time consuming exercise. In this paper the particle swarm optimization technique is employed to automatically tune the MFs of a Mamdani-type of fuzzy controller. The effectiveness of the proposed controller is demonstrated by the control performance of such an FLC of a nonlinear water tank system. The results are compared favourably to a PSO tuned PID controller.
引用
收藏
页码:1290 / +
页数:2
相关论文
共 15 条
  • [1] The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    Clerc, M
    Kennedy, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 58 - 73
  • [2] Fitting fuzzy membership functions using hybrid particle swarm optimization
    Esmin, A. A. A.
    Lambert-Torres, G.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 2112 - +
  • [3] ESMIN AAA, 2002, P 2002 IEEE INT C SS
  • [4] ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM
    JANG, JSR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 665 - 685
  • [5] RETRACTED: Fuzzy controller training using particle swarm optimization for nonlinear system control (Retracted Article)
    Karakuzu, Cihan
    [J]. ISA TRANSACTIONS, 2008, 47 (02) : 229 - 239
  • [6] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [7] Intensity-preserving contrast enhancement for gray-level images using multi-objective particle swarm optimization
    Kwok, N. M.
    Ha, Q. P.
    Liu, D. K.
    Fang, G.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2006, : 21 - +
  • [8] A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization
    Kwok, N. M.
    Ha, Q. P.
    Nguyen, T. H.
    Li, J.
    Samali, B.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2006, 132 (02) : 441 - 451
  • [9] Lin C. J., 2006, INT MATH FORUM, V1, P853
  • [10] Lin C.-T., 1996, Neural fuzzy systems: a neurofuzzy synergism to intelligent systems