共 50 条
Ozsath-Szabo invariants and tight contact three-manifolds, I
被引:52
|作者:
Lisca, P
[1
]
Stipsicz, AI
机构:
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
来源:
关键词:
tight;
fillable contact structures;
Ozsvath-Szabo invariants;
D O I:
10.2140/gt.2004.8.925
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let S-r(3)(K) be the oriented 3-manifold obtained by rational r-surgery on a knot K subset of S-3. Using the contact Ozsvath-Szabo invariants we prove, for a class of knots K containing all the algebraic knots, that S-r(3)(K) carries positive, tight contact structures for every r not equal 2g(s)( K)-1, where g(s)(K) is the slice genus of K. This implies, in particular, that the Brieskorn spheres -Sigma(2; 3; 4) and -Sigma( 2; 3; 3) carry tight, positive contact structures. As an application of our main result we show that for each m is an element of N there exists a Seifert fibered rational homology 3-sphere M-m carrying at least m pairwise non-isomorphic tight, nonfillable contact structures.
引用
收藏
页码:925 / 945
页数:21
相关论文