Ozsath-Szabo invariants and tight contact three-manifolds, I

被引:52
|
作者
Lisca, P [1 ]
Stipsicz, AI
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
来源
GEOMETRY & TOPOLOGY | 2004年 / 8卷
关键词
tight; fillable contact structures; Ozsvath-Szabo invariants;
D O I
10.2140/gt.2004.8.925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-r(3)(K) be the oriented 3-manifold obtained by rational r-surgery on a knot K subset of S-3. Using the contact Ozsvath-Szabo invariants we prove, for a class of knots K containing all the algebraic knots, that S-r(3)(K) carries positive, tight contact structures for every r not equal 2g(s)( K)-1, where g(s)(K) is the slice genus of K. This implies, in particular, that the Brieskorn spheres -Sigma(2; 3; 4) and -Sigma( 2; 3; 3) carry tight, positive contact structures. As an application of our main result we show that for each m is an element of N there exists a Seifert fibered rational homology 3-sphere M-m carrying at least m pairwise non-isomorphic tight, nonfillable contact structures.
引用
收藏
页码:925 / 945
页数:21
相关论文
共 50 条