Ozsath-Szabo invariants and tight contact three-manifolds, I

被引:52
作者
Lisca, P [1 ]
Stipsicz, AI
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
来源
GEOMETRY & TOPOLOGY | 2004年 / 8卷
关键词
tight; fillable contact structures; Ozsvath-Szabo invariants;
D O I
10.2140/gt.2004.8.925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-r(3)(K) be the oriented 3-manifold obtained by rational r-surgery on a knot K subset of S-3. Using the contact Ozsvath-Szabo invariants we prove, for a class of knots K containing all the algebraic knots, that S-r(3)(K) carries positive, tight contact structures for every r not equal 2g(s)( K)-1, where g(s)(K) is the slice genus of K. This implies, in particular, that the Brieskorn spheres -Sigma(2; 3; 4) and -Sigma( 2; 3; 3) carry tight, positive contact structures. As an application of our main result we show that for each m is an element of N there exists a Seifert fibered rational homology 3-sphere M-m carrying at least m pairwise non-isomorphic tight, nonfillable contact structures.
引用
收藏
页码:925 / 945
页数:21
相关论文
共 33 条
[1]  
BENNEQUIN D, 1983, ASTERISQUE, P87
[2]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[3]  
Brauner K., 1928, Abh. Math. Sem. Hamburg, V6, P8
[4]   A Legendrian surgery presentation of contact 3-manifolds [J].
Ding, F ;
Geiges, H .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 :583-598
[5]  
Ding F., 2004, Turkish J. Math, V28, P41
[6]  
Ding Fan, 2001, ALGEBR GEOM TOPOL, V1, P153
[7]   Seiberg-Witten equations and 4-manifold topology [J].
Donaldson, SK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 33 (01) :45-70
[8]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P279
[9]  
Eliashberg Y., 1990, Internat. J. Math., V1, P29, DOI [10.1142/S0129167X90000034, DOI 10.1142/S0129167X90000034]
[10]  
ELIASHBERG Y, 1991, LONDON MATH SOC LECT, V151, P45