Effects of Wall Reflection on the Per-Antenna Power Distribution of ZF-Precoded ULA for Indoor mmWave MU-MIMO Transmissions

被引:7
作者
Zhang, Yixin [1 ]
Zhang, Jiliang [1 ]
Chu, Xiaoli [1 ]
Zhang, Jie [1 ,2 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 4ET, S Yorkshire, England
[2] Ranplan Wireless Network Design Ltd, Cambridge CB23 3UY, England
关键词
Wall reflection; power distribution; ZF precoding; ULA; indoor; mmWave; MU-MIMO; downlink; DESIGN;
D O I
10.1109/LCOMM.2020.3022914
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Indoor access points (APs) with large-scale antenna arrays are commonly deployed in the vicinity of a wall, where wall reflection (WR) affects the indoor electromagnetic (EM) wave propagation. In this letter, we investigate the effects of WR on the per-antenna power distribution of a transmit uniform linear array (ULA) adopting a zero-forcing (ZF) precoder. A new channel model is constructed to characterise the impact of both the line-of-sight (LOS) path and the WR path on indoor millimetre wave (mmWave) multi-user (MU) multiple-input multiple-output (MIMO) downlink transmissions. Specifically for the dual user equipment (UE) scenario, the ZF precoding matrix is analytically obtained and verified through simulations. The effects of WR on the per-antenna power distribution of the ZF-precoded ULA, in terms of the normalised power distribution and maximum power ratio (MPR), are evaluated through the comparisons between our proposed channel model and the pure LOS channel model. Our analytical and numerical results reveal the impact of AP configurations (the number of antennas and the AP-wall distance), multi-user spatial distribution (the angle of departure (AoD) and length of the LOS path for each user), and wall parameters (permittivity and thickness) on the power distribution across the ZF-precoded ULA. It is found that the effects of WR will exacerbate the uneven power distribution across the ZF-precoded ULA.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 21 条
[1]   Per-Antenna Power Distribution of a Zero-Forcing Beamformed ULA in Pure LOS MU-MIMO [J].
Amani, Navid ;
Glazunov, Andres Alayon ;
Ivashina, Marianna V. ;
Maaskant, Rob .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) :2515-2518
[2]   Array Antennas With Jointly Optimized Elements Positions and Dimensions Part I: Linear Arrays [J].
Angeletti, Piero ;
Toso, Giovanni .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (04) :1619-1626
[3]  
[Anonymous], 2015, document Recommendation ITU-R P.2040-1
[4]  
de la Roche G., 2010, FEMTOCELLS TECHNOLOG
[5]   Massive MIMO Performance Evaluation Based on Measured Propagation Data [J].
Gao, Xiang ;
Edfors, Ove ;
Rusek, Fredrik ;
Tufvesson, Fredrik .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (07) :3899-3911
[6]  
Gustafsson M, 2014, PROC EUR CONF ANTENN, P2723, DOI 10.1109/EuCAP.2014.6902387
[7]   Indoor Millimeter-Wave Systems: Design and Performance Evaluation [J].
Kibilda, Jacek ;
MacKenzie, Allen B. ;
Abdel-Rahman, Mohammad J. ;
Yoo, Seong Ki ;
Giordano, Lorenzo Galati ;
Cotton, Simon L. ;
Marchetti, Nicola ;
Saad, Walid ;
Scanlon, William G. ;
Garcia-Rodriguez, Adrian ;
Lopez-Perez, David ;
Claussen, Holger ;
DaSilva, Luiz A. .
PROCEEDINGS OF THE IEEE, 2020, 108 (06) :923-944
[8]   Efficient Zero-Forcing Precoder Design for Weighted Sum-Rate Maximization With Per-Antenna Power Constraint [J].
Pham, Thuy M. ;
Farrell, Ronan ;
Dooley, John ;
Dutkiewicz, Eryk ;
Nguyen, Diep N. ;
Le-Nam Tran .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (04) :3640-3645
[9]   Millimeter-Wave MIMO Prototype: Measurements and Experimental Results [J].
Raghavan, Vasanthan ;
Partyka, Andrzej ;
Sampath, Ashwin ;
Subramanian, Sundar ;
Koymen, Ozge Hizir ;
Ravid, Kobi ;
Cezanne, Juergen ;
Mukkavilli, Kiran ;
Li, Junyi .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (01) :202-209
[10]  
Savy L, 2016, IEEE RAD CONF, P611