Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

被引:251
作者
Siegmund, Bernhard [1 ,2 ]
Mischok, Andreas [1 ,2 ]
Benduhn, Johannes [1 ,2 ]
Zeika, Olaf [1 ,2 ]
Ullbrich, Sascha [1 ,2 ]
Nehm, Frederik [1 ,2 ]
Boehm, Matthias [2 ]
Spoltore, Donato [1 ,2 ]
Froeb, Hartmut [1 ,2 ]
Koerner, Christian [1 ,2 ]
Leo, Karl [1 ,2 ]
Vandewal, Koen [1 ,2 ]
机构
[1] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, George Bahr Str 1, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Inst Appl Phys, George Bahr Str 1, D-01062 Dresden, Germany
关键词
SEMICONDUCTING POLYMERS; QUANTUM EFFICIENCY; SPECTRAL RESPONSE; SPECTROSCOPY; DONOR; PHOTOCURRENT; FLUORESCENCE; PHOTODIODES; PREDICTION; MOLECULES;
D O I
10.1038/ncomms15421
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.
引用
收藏
页数:6
相关论文
共 55 条
[1]   Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser [J].
Andrew, P ;
Turnbull, GA ;
Samuel, IDW ;
Barnes, WL .
APPLIED PHYSICS LETTERS, 2002, 81 (06) :954-956
[2]  
[Anonymous], 2000, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
[3]   Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes [J].
Armin, Ardalan ;
Jansen-van Vuuren, Ross D. ;
Kopidakis, Nikos ;
Burn, Paul L. ;
Meredith, Paul .
NATURE COMMUNICATIONS, 2015, 6
[4]   Broad Spectral Response Using Carbon Nanotube/Organic Semiconductor/C60 Photodetectors [J].
Arnold, Michael S. ;
Zimmerman, Jeramy D. ;
Renshaw, Christopher K. ;
Xu, Xin ;
Lunt, Richard R. ;
Austin, Christine M. ;
Forrest, Stephen R. .
NANO LETTERS, 2009, 9 (09) :3354-3358
[5]   Organic Light Detectors: Photodiodes and Phototransistors [J].
Baeg, Kang-Jun ;
Binda, Maddalena ;
Natali, Dario ;
Caironi, Mario ;
Noh, Yong-Young .
ADVANCED MATERIALS, 2013, 25 (31) :4267-4295
[6]   Field-Effect Transistors Based on Tetraphenyldipyranylidenes and the Sulfur Analogues [J].
Bolag, Altan ;
Mamada, Masashi ;
Nishida, Jun-ichi ;
Yamashita, Yoshiro .
CHEMISTRY OF MATERIALS, 2009, 21 (19) :4350-4352
[7]   Small band gap semiconducting polymers made from dye molecules: Polysquaraines [J].
Brocks, G ;
Tol, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (05) :1838-1846
[8]   Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy [J].
Buchaca-Domingo, Ester ;
Vandewal, Koen ;
Fei, Zhuping ;
Watkins, Scott E. ;
Scholes, Fiona H. ;
Bannock, James H. ;
de Mello, John C. ;
Richter, Lee J. ;
DeLongchamp, Dean M. ;
Amassian, Aram ;
Heeney, Martin ;
Salleo, Alberto ;
Stingelin, Natalie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (16) :5256-5259
[9]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[10]  
Burns D.A., 2007, Handbook of near-infrared analysis