Qualitative properties of singular solutions to fractional elliptic equations

被引:1
|
作者
Huang, Shuibo [1 ,2 ]
Zhang, Zhitao [3 ,4 ,5 ]
Liu, Zhisu [6 ]
机构
[1] Northwest Minzu Univ, Sch Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Key Lab Streaming Data Comp Technol & Applicat, Lanzhou 730030, Gansu, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[4] Acad Math & Syst Sci, Chinese Acad Sci, HLM, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[6] China Univ Geosci, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional elliptic equations; Moving spheres method; Blow-up analysis; Local behaviour; Singular solutions; SCALAR CURVATURE EQUATION; POSITIVE SOLUTIONS; ASYMPTOTIC SYMMETRY; LOCAL BEHAVIOR; MOVING PLANES; INEQUALITY; REGULARITY; LAPLACIAN; EXISTENCE;
D O I
10.1017/prm.2021.52
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by the moving spheres method, Caffarelli-Silvestre extension formula and blow-up analysis, we study the local behaviour of nonnegative solutions to fractional elliptic equations (-Delta)(alpha)u = f(u), x is an element of Omega\Gamma, where 0 < alpha < 1, Omega = R-N or Omega is a smooth bounded domain, Gamma is a singular subset of n with fractional capacity zero, f (t) is locally bounded and positive for t is an element of [0, infinity), and f (t)/t((N+2 alpha)/(N-2 alpha)) is nonincreasing in t for large t, rather than for every t > 0. Our main result is that the solutions satisfy the estimate f(u(x))/u(x) <= Cd(x, Gamma)(-2 alpha). This estimate is new even for Gamma = {0}. As applications, we derive the spherical Harnack inequality, asymptotic symmetry, cylindrical symmetry of the solutions.
引用
收藏
页码:1155 / 1190
页数:36
相关论文
共 50 条
  • [41] Singular Solutions of Elliptic Equations with Iterated Exponentials
    Marius Ghergu
    Olivier Goubet
    The Journal of Geometric Analysis, 2020, 30 : 1755 - 1773
  • [42] POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS WITH SINGULAR NONLINEARITY
    Shi, Junping
    Yao, Miaoxin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [43] ANALYTICITY OF SOLUTIONS OF SINGULAR ELLIPTIC-EQUATIONS
    EGOROV, IE
    MATHEMATICS OF THE USSR-SBORNIK, 1987, 133 (1-2): : 147 - 153
  • [44] BOUNDARY ESTIMATES FOR SOLUTIONS TO SINGULAR ELLIPTIC EQUATIONS
    Anedda, Claudia
    Cuccu, Fabrizio
    Porru, Giovanni
    MATEMATICHE, 2005, 60 (02): : 339 - 352
  • [45] SOLUTIONS OF SINGULAR SEMILINEAR ELLIPTIC-EQUATIONS
    DALMASSO, R
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 153 : 191 - 201
  • [46] BOUNDEDNESS OF SOLUTIONS TO SINGULAR ANISOTROPIC ELLIPTIC EQUATIONS
    Brandolini, Barbara
    Cirstea, Florica C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1545 - 1561
  • [47] Singular solutions on a submanifold of nonlinear elliptic equations
    Grillot, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (01): : 49 - 54
  • [48] Qualitative properties of solutions for dual fractional nonlinear parabolic equations
    Chen, Wenxiong
    Ma, Lingwei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
  • [49] Positive solutions for singular nonlinear elliptic equations
    Hernandez, Jesus
    Mancebo, Francisco J.
    Vega, Jose M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 41 - 62
  • [50] Multiple solutions to singular critical elliptic equations
    Han, Pigong
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 156 (1) : 359 - 380